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Global linear equations are not symmetric in the typical finite element formulation for a sloshing 
fluid-structure interaction problem. There are three approaches to solve the non-symmetric equations: 
(a) directly solving by a non-symmetric matrix solver; (b) transforming the non-symmetric equations 
into symmetric ones explicitly and then solving by a symmetric matrix solver; (c) implementing the 
transformation procedure into a symmetric matrix solver implicitly. In the present paper, the 
performance comparison of these three methods is given for a sloshing problem. 
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1. INTRODUCTION 
In the typical finite element formulation for a sloshing 

fluid-structure interaction problem with freedoms of 
displacements and pressures and wave heights, the global 
linear equations are not symmetric. The non-symmetric 
equations can be solved directly by a non-symmetric matrix 
solver or be solved by a symmetric matrix solver after being 
transformed into symmetric equations. The transformation can 
be taken explicitly before solving or be implemented into the 
matrix solver implicitly. So there are three approaches: (a) 
directly solving by a non-symmetric matrix solver; (b) 
transforming the non-symmetric equations into symmetric 
ones explicitly and then solving by a symmetric matrix solver; 
(c) implementing the transformation procedure into a 
symmetric matrix solver implicitly. In this paper, a sloshing 
problem will be solved by the three methods and the 
performance comparison will be given for eigen analysis 
between the method (b) and (c) and for dynamic response 
analysis between the method (a) and (b). 
2. FORMULATIONS 

Using the finite element analysis interpolations [1] [2], the 
structural dynamics equations can be discretized as: 
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where u represents the node displacement vector and the 

displacement in the structure domain is interpolated as: 
Nuu  (2) 

where N  is the interpolation function vector. M  is the 
mass matrix, C  is the dumping matrix and K is the 

stiffness matrix. of  is the external node force vector except 

the fluid pressure and pf  is the node force vector due to the 

fluid pressure: 
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where p  is the vector that contains nodal values of fluid 

pressure and pN  is the interpolation function vector of fluid 

pressure. 
The fluid domain dominated by the Navier-Stocks equations 

and the continuity equation can be simplified as a pressure 
field, assuming that the fluid is incompressible and ignoring 
the effects of nonlinear convective terms as well as the viscous 
terms. 
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where p denotes the pressure and c  is the fluid sound 

speed.  
On the fluid-structure interaction interfaces IS , the 

acceleration normal to the interface surface is continuous and 
the equilibrium equation of Newton’s second law for a fluid 
particle becomes: 
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where   is the fluid density, n is the normal direction of 

the interface surface from the solid domain to the fluid domain 
and u denotes the displacement. 

On the free surface, the pressure can be approximately 
expressed for small-amplitude gravity waves as: 

gpp   (6) 



where g  is the gravity and   denotes the wave elevation 

with respect to the equilibrium free surface and p  denotes 

the prescribed part of the pressure, for example, atmospheric 
pressure. For a fluid particle on the free surface, the following 
condition is satisfied. 
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Applying the variational principle for equation (4) and (6), 
and considering equations (5) and (7), we can have 
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Rewriting equations (1), (8) and (9), yields the global linear 
equations to be solved. 
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in which the damping is no included here and S  is set 

approximately to 0. 
Eliminating the pressure yields the following symmetric 

equations. 
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where 
T

f QQHM 1   (16) 

T
p  TQHQ 1  (17) 

T
pp   THTM 1  (18) 

In the method (a) the equation (14) is solved, while in the 
method (b) the equation (15) is solved. In the method (c) the 
calculation of equations (16), (17) and (18) in implemented 
into a symmetric matrix solver and matrices fM , Q  and 

M  are not saved explicitly. 

3. PERFORMANCE TEST 
Eigen-modes and Seismic response of a cylindrical tank 

partly filled with water is calculated with the FEM model 
shown as Fig. 1, whose dimensions are: the diameter 

D=1760mm, the height H= 289.7mm, the wall thickness 
t=25mm. This tank has Young’s modulus E=1.62×105MPa, 
Poisson ratio ν =0.3 and the density ρ =7.551 ×

10-6kg/mm3.Water is filled to a height of 236.2mm. The 
density of water is given as 1.019×10-6kg/mm3 . There are 

8100 fluid elements and 1785 shell elements in the FEM 
model. 
3.1 Eigen Analysis 

5 eigen modes are extracted by the subspace method. One of 
the modes is shown in Fig.2. The CPU time of method (b) is 
5.9 times more than that of the method (c). 

            
Fig.1 FEM model        Fig.2 One of eigen modes 

 
3.2 Seismic Response Analysis 

Three direction seismic waves, whose acceleration response 
spectrums are shown in Fig.3, are input to the tank’s bottom. 
The response is calculated for 20 seconds with a time step of 
0.01 second. The CPU time of the method (b) is 2.3 times 
more than that of the method (a). 
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Fig.3 Acceleration response spectrums of seismic waves 

4. CONCLUSIONS 
The calculation cost of method (b) is higher than that of 

method (a) in eigen analysis and also higher than that of 
method (c) in dynamic response analysis. It is known that the 
reason is that sparsity is lost for the matrices fM , Q  

and M . If the FEM model became larger than 10 thousand 

DOFs, the calculation time of the method (b) would be much 
longer than that of the method (a) and (c). 
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