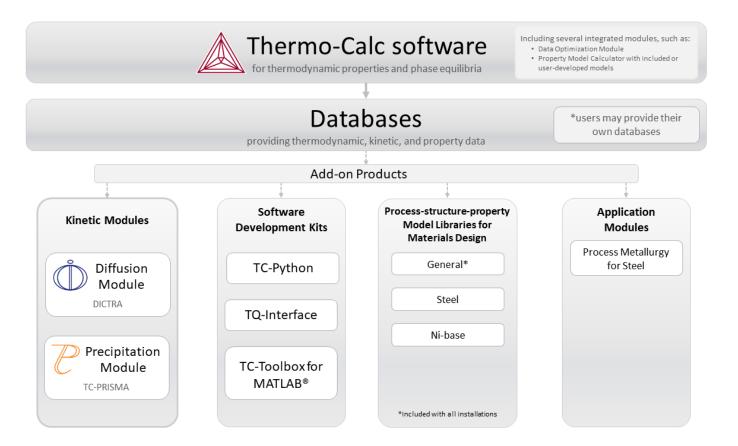


Thermo-Calc News 2022a release


Thermo-Calc Software, Stockholm, Sweden

December 17th, 2021

www.thermocalc.com

Product overview

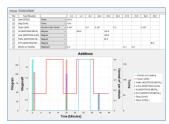
User experience - past 5 years

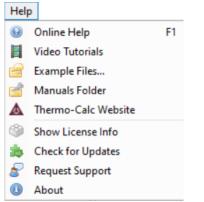
Precipitation Module (TC-PRISMA) integrated into Thermo-Calc framework

Diffusion Module (DICTRA) available in Graphical Mode

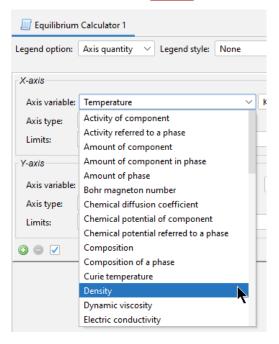
Process Metallurgy Module introduced, for easy calculation of liquid metal / slag eq. & simulation of e.g. AOD/ladle furnace using the EERZ model

On-line help


Continuous improvements to documentation


□ New examples

New video tutorials


User experience - introduced with 2022a

 Several Quantities Now directly Available for Plotting and Tabulating Instead of Entering as a Function, e.g.
 Volume fraction of phase, Density, Heat Capacity,....

4 New Examples

New video tutorials

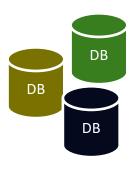
□ A self-paced learning hub has been developed and is available from our website on a subscription basis.

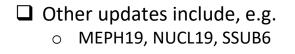
Thermo-Calc

Software

Data relevance and quality - past 5 years

Several new and/or updated Databases made available, e.g.:


□ **New databases** introduced in the period, e.g.


- High-Entropy Alloys (TCHEA, MOBHEA)
- Copper alloys (TCCU, MOBCU)
- Ti- and TiAl-alloys (TCTI, MOBTI)
- Precious alloys (TCNOBL)
- Solder alloys (MOBSLD)

Updates and/or revisions of all major databases, e.g.

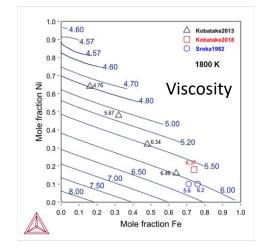
- o TCFE
- o TCNI
- o TCOX
- o TCAL
- \circ TCMG
- o TCHEA
- o TCCU
- o TCTI
- o TCSLD

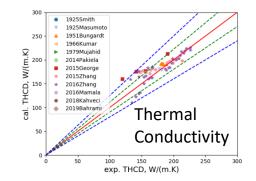
Data relevance and quality - past 5 years

Several new properties modelled, e.g.:

Molar volume (in general) included in most databases

□ Volume of slag and metallic liquid added to:


• Oxides and Slags (TCOX)


□ Viscosity & Surface tension of liquid added to:

- Steel an Fe-based alloys (TCFE)
- Nickel-based alloys (TCNI)
- Aluminium alloys (TCAL)
- Magnesium alloys (TCMG)
- Copper Alloys (TCCU)
- Ti/TIAl-alloys (TCTI)
- High-Entropy Alloys (TCHEA)
- Solder alloys (TCSLD)
- Oxides and Slags (TCOX)

Thermal conductivity / Electric resistivity added to:

- Nickel-based alloys (TCNI)
- Aluminium alloys (TCAL)
- Magnesium alloys (TCMG)
- High-Entropy Alloys (TCHEA)

New Databases:

- □ TCS Permanent Magnetic Materials Database (TCPMAG1)
- □ TCS Zr-based Alloys Database (TCZR1)
- □ TCS Noble Metal Alloys Mobility Database (MOBNOBL1)

New versions of thermodynamic and kinetic databases:

- □ TCS Steel and Fe-alloys Database (TCFE12)
- □ TCS Steels/Fe-Alloys Mobility Database (MOBFE7)
- □ TCS Ti/TiAl-based Alloys Database (TCTI4)
- □ SGTE Solutions Database (SSOL8)
- □ TCS Al-alloys Mobility Database (MOBAL7)

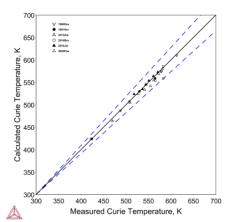
Updates to:

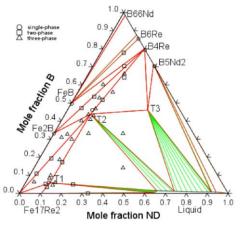
- □ TCS Mg-based Alloys Database (TCMG6.2)
- □ TCS Al-based Alloys Database (TCAL8.1)
- □ TCS Solder Alloy Solutions Database (TCSLD4.1)
- □ TCS High Entropy Alloys Database (TCHEA5.1)
- □ TCS Metal Oxide Solutions Database (TCOX10.2 and 11.1)
- □ TCS Ni-based Superalloys Database (TCNI11.0.1)

TCS Permanent Magnetic Materials Database (TCPMAG1)

This new database was developed for the NdFeB based permanent magnets.

- 6 elements are included: **B, Ce, Fe, La, Nd, Pr**
- All 15 binary systems assessed


11 ternary systems are assessed based on the published experimental data


B-Ce-Fe	B-Ce-Nd	B-Fe-La	B-Fe-Nd	B-Fe-Pr	Ce-Fe-La
Ce-Fe-Nd	Ce-Fe-Pr	Ce-La-Pr	Fe-La-Nd	Fe-Nd-Pr	

□ 19 phases are included

Thermophysical Properties

- Molar Volume of liquid & solid phases
- Viscosity of liquid
- Surface tension of liquid

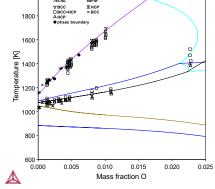
Fe-Nd-B isothermal section at 1173K

Curie Temperatures for the T1 phase: (Nd,La,Ce,Pr)2Fe14B

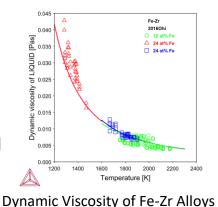
In all cases the differences are less than 5%.

TCS Zr-based Alloys Database (TCZR1)

This new database can be used for a wide range of compositions from pure zirconium to complex zirconium-based commercial zirconium alloys.


- 8 elements are included: Cr, Fe, H, Nb, Ni, O, Sn, Zr
- All 28 binary systems are assessed for their full range of composition
- 19 ternary systems including all Zr-containing ternaries that has published experimental data together with many ternary systems for the major alloying elements are assessed

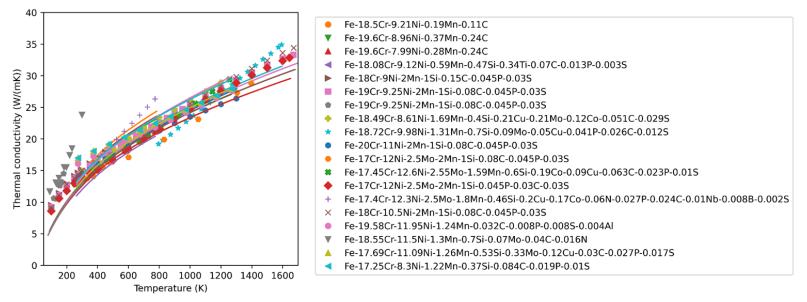
Cr-Fe-Nb	Cr-Fe-Sn	Cr-Fe-Zr	Cr-Nb-Sn	Cr-Nb-Zr	Cr-Ni-Zr
Cr-O-Zr	Cr-Sn-Zr	Fe-Nb-Ni	Fe-Nb-Zr	Fe-Ni-Zr	Fe-O-Zr
Fe-Sn-Zr	H-Nb-Zr	Nb-Ni-Zr	Nb-O-Zr	Nb-Sn-Zr	Ni-O-Zr
Ni-Sn-Zr					


69 phases are included

Thermophysical Properties

- Molar Volume of liquid & solid phases
- □ Viscosity of liquid
- □ Surface tension of liquid

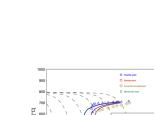
Calculated phase boundaries of the pseudobinary Zircaloy 2/4-system

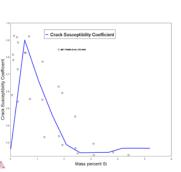

TCS Steel and Fe-alloys Database (TCFE12)

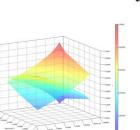
- □ New thermophysical properties:
 - Thermal conductivity
 - Electrical resistivity
- Added Tin (Sn):
 - 26 Binaries Sn-X (X=Al, B, C, Ca, Ce, Co, Cr, Cu, Fe, Mg, Mn, Mo, Nb, Ni, O, P, Ru, S, Si, Sn, Ta, Ti, V, W, Y, Zn, Zr)
 - 13 Ternaries: Fe-Sn-X (X=C, Cr, Cu, Mn, Nb, Ni, O, S, Si, W, Zn, Zr), and Al-C-Sn
- Updated Zinc corner, as well as systems related for the galvanization process:
 - Remodelled and unified all gamma-brass D82 phases stable in Fe-Zn, Cu-Zn, Ni-Zn, Mn-Zn, Co-Zn with a 4SL FE3ZN7_D82.
 - Added 8 Ternaries: Al-Fe-Mg, Cu-Fe-Zn, Fe-Ni-Zn, Fe-Si-Zn, Fe-Mg-Si, Fe-Mg-Ni, Fe-Mn-Zn, Mg-Si-Zn
- Several other updates

TCS Steel and Fe-alloys Database (TCFE12)

Thermal conductivity of **Cr-Ni austenitic stainless steel alloys**.




The values are calculated by freezing-in the state at the typical annealing temperature of manufacture for each alloy.

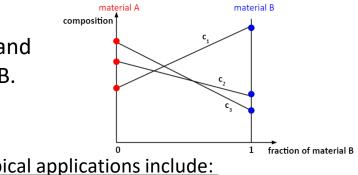

[1991Madelung] O. Madelung, G.K. White, eds., Metals: Electronic Transport Phenomena – Thermal Conductivity of Pure Metals and Alloys, in: Therm. Conduct. Pure Met. Alloy., Springer-Verlag, Berlin/Heidelberg, 1991.

Functionality - past 5 years

- Property Model Calculator
- Uncertainty prediction
- □ Property model library for Steel and calculation of TTT/CCT-diagrams
- Dessibility to enter an initial size distribution in Precipitation Module (TC-PRISMA)
- ❑ Non-spherical morphologies in Precipitation Module (TC-PRISMA)
- NPLE and Para-equilibrium growth models in Precipitation Module (TC-PRISMA)
- □ 3D-plots for grid calculations
- Extension of Scheil-module to account for back-diffusion and solute trapping
- Several new property models introduced, e.g. yield strength, crack susceptibility,....

Reta Transus (C

Data Distric



Functionality - introduced with 2022a

Material to Material calculator, i.e. step and map calculation between an alloy A and B.

Condition Definitions			
Temperature	Celsius 🗸	650.0	
Pressure	Pascal ~	100000.0	Typical applic
Fraction of second m	nateri 0.5		
Dependent compone	ent Fe 🗸		Graded ma
Activity conditions (Non-simila
			Reaction of
	First material	Second material	volcanic as
Material name	Martensitic Ste	Alloy 800	1.0
Composition Cr	17.0	19.0	• • •
Composition Ni	2.0	35.0	0.8
	Load material	Load material	70000000000000000000000000000000000000
			e o o s
	Save material as	Save material as	Pro fac
			0.3
Calculation Type			0.2
Single equilibriu	ım 💿 One axis	Phase diagram	0.1
			0.0 0.1 0.2 0.3

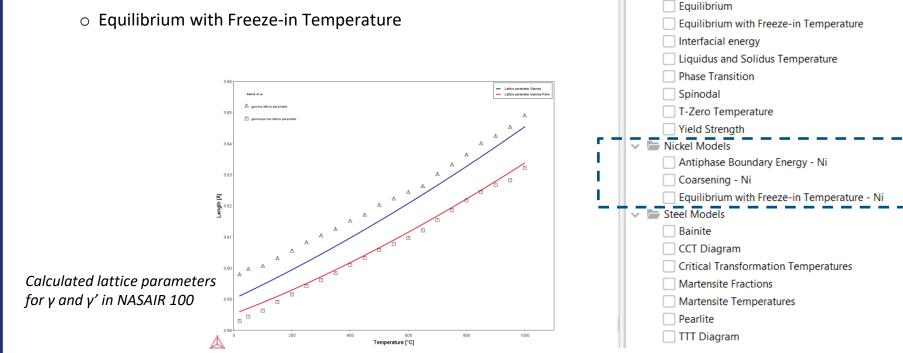
- Graded materials produced by e.g. additive manufacturing
- **Non-similar material joints**, such as welds of Ti with Ni-alloy
- Reaction of two materials, for instance, the influence of volcanic ash on a turbine component in an engine

- FCC_A1

0.5 0.6 0.7 0.8 0.9

Mass fraction of Alloy 800

Functionality - introduced with 2022a


□ <u>Models for grain growth and particle (Zener)</u> pinning in Precipitation Module (TC-PRISMA).

Matrix Phase			
Phase: BCC_A2	✓	letails	
Elastic properties:	Disregard	\checkmark	EIS - Size distribution of BCC_A2 (Matrix)Time: 0.0 [s]
Molar volume:	Database	✓ 7.0E-6 m ³ /mol	 Size distribution of BCC_A2 (Matrix)Time: 600.0 [s] Size distribution of BCC_A2 (Matrix)Time: 3600.0 [s]
Grain growth:	\checkmark		
Grain size:	Edit grain size distribution		United at 16
Grain boundary energy:	0.5 J/m ²		98 36 16
Grain boundary mobility:	Prefactor: 0.004	m ⁴ /Js Activation energy: 242000.0 J/mol	2014
Grain aspect ratio:	1.0		1210
Zener pinning:			$\mathcal{E}^{(1)}$
Dislocation density:	5.0E12 m ⁻²		
Deformation strain:	1.0		
Mobility enhancement:	Prefactor: 1.0	Activation energy: 0.0 J/mol	

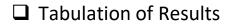
Functionality - introduced with 2022a

Property model library for Ni-alloys, including models for:

- Anti Phase Boundary (APB) Energy
- Coarsening kinetics,

Thermo-Calc Software

Configuration


General Models
 Coarsening

Driving Force

Crack Susceptibility Coefficient

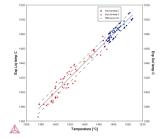
Interoperability - past 5 years

Centrer 1			
Caculate *	Centre New Seccement	Pist Fanderer	
	A MINISTRATION AND A	Table Renderer	
	Parform New Parform Later-	Genesatas a table h	or diffusion simulation results
	Fanarre_		
	Reneve		

Composition of (vs Distanc	e U-fracto	n of Mn vs Distance Table Composition C vs distance
Distance [m]	1: W(C)	2: W(FE)	3: W(MN)
0.02000	1.42255	97.97924	0.59821
0.02009	1.41441	97.98828	0.59731
0.02017	1.40556	97.99794	0.59650
0.02026	1.39708	98.00714	0.59578
0.02035	1.38801	98.01683	0.59516
0.02045	1.37891	98.02648	0.59462
0.02054	1.36953	98.03630	0.59417
0.02064	1.35995	98.04625	0.59380
0.02074	1.35012	98.05636	0.59351
0.02084	1.34008	98.06663	0.59329
0.02094	1.32977	98.07710	0.59314

Configuration Ø 8 ×	Results			
10 Composition of Ni vs Distance	Composition	of Ni vs Dista	NOT	
	Distance [m]	1: Time-0	Distance (m) (1)	
Sone Diegram Bree Transpoler (New Girl: Swith Asex Ratals Labols Table Vice	0.00000	10,00000	0.00000	16.505.10
	2.045825-6	1081633	2.040625-6	16.55286
Decinal sight 5 C Number format Auto	4.081635-6	11.63265	4281632-6	16.69524
Save table	4.122455-6	12.44018	6.122452-4	16 92044
	8.163270-6	13.26534	8.163276-4	17,24801
Diffusion single region Austenite	0.00001	3400163	0.00001	17.64721
	0.00001	14,00794	0.00001	18.11840
Simple mode	0.00001	15.71429	0.00001	18-65355
Xau	0.00002	16.52063	10000.0	19,34410
	0.00002	173464	0.00002	18.8812
Advariable Distance v Meter v Region All regions v	0.00002	18.16327	0.00002	20.55680
Anis type: Literar v	0.00002	18.97559	6.00000	21,26767
Links 11 to 10 step 11 P. Automatic soling	0.00002	1579592	0.00002	22.001EH
The second second	0.00000	2041224	0.00003	22,75474
Yars	0.00003	21.42857	0.00003	23.52136
Ans variable. Conception N Man percent -	0.00003	22.24499	600003	2429667
	6.00003	2106122	0.00003	25.07636
Aristype: Linear v	0.00003	23.87753	6.00003	25,85658
Limits 0.0 to 0.00.0 yesp 10.0 2 Automatic scaling	0.00004	34,09308	0.00004	26.63393
	0.00004	25,51020	0.00004	27.40533
Time Hours v Weller(d) 0.0 30.0	8.00004	2632653	0.00004	28.16809
000	0.00004	27.54284	0.00004	28,91575

Converting Plot to Table data



TC-Python

□ New TC-Toolbox for MATLAB[®] with Extensive Functionality

□ Property Model Development Framework

	Property Model Calculator 3			
	Composition unit	Mass percent 🤟		
Martensite Ghosh Wave	Condition Defin	itions		
PeakHardnessM2C MSParameterEvaluationFeCModel	Temperature	Celsius 🗸	1000.0	
MSParameterEvaluationFeCModel MSParameterEvaluationFeNModel Normal Distributed model	Composition	Fe	99.85	
- ParaequilbriumModel	Composition	с	0.01	
TZeroOptModel PileParserModel	Composition	Mn	0.01	
Martensite Stormvinter MartensiteOptModel	Composition	s	0.01	
T-Zero Solution Strengthening	Composition	o	0.01	
General Models	Composition	N	0.01	
Phase transition Interfacial energy	Composition	Mo	0.01	
Driving force	Composition	v	0.01	
	Composition	Co	0.01	

□ Batch Calculations type for High Throughput Calculations

Interoperability - introduced with 2022a

□ Several minor improvements and bug fixes to TC-Python and TC-Toolbox for MATLAB®

- <u>SDK-905</u> TC-Python auto-complete broken in PyCharm of versions later than 2020.3.5. This has now been fixed
- <u>SDK-776</u> The possibility to get interfacial_energy from a SingleEquilibriumCalculation has been added. This is used internally in several property models, but can also be used in any "normal" python scripts using TC-Python.
- <u>SDK-892</u>: Bookmarked single equilibrium calculation states now also contain the component status (for example "entered", "suspended"), which will now be correctly set when loading a bookmarked state using *set_state_to_bookmark()*.
- <u>SDK-908</u> Before Property Models that returned several values did not return anything in case of errors but raised an exception. Now the errors are instead logged, and the corresponding value is set to NaN. That means that the values that are correct in case of errors now are returned.
- <u>SDK-910</u>: Retrieving result values could fail in TC-Python: In the rare case of having result data with multiple identical values on the x-axis, the get_values_of method (and similar) of Scheil, Property Diagram and Phase Diagram result objects could fail with an exception.
- <u>CMD-914</u> and <u>CMD-917</u> The functions for adding and removing dynamic arguments to Property Models is improved. Now you can specify the index of newly created arguments, and as input to the functions you get the index of all previously created arguments.
- <u>SDK-922</u> The single equilibrium calculator is now ignoring special elements (i.e., vacancies, positrons, or electrons) defined in the system, when checking if the system elements and defined components are matching.
- <u>SDK-934</u> The Property Model SDK is improved regarding how models control visibility of graphical input fields.
- <u>SDK-946</u> The method add_initial_equilibrium if fixed for phase diagram calculations. Previously there was a problem if it was called before creating the axes.

Thank You!

When data matters

www.thermocalc.com