

TCS Metal Oxide Solutions Database (TCOX11)

Technical Information

Available Starting with Thermo-Calc Version 2021b

Contents

About the TCS Metal Oxide Solutions Database (TCOX)	
TCS Metal Oxide Solutions Database (TCOX) Resources	
TCOX11 Elements, Systems, Phases, and Properties	
TCOX11 Systems	
TCOX11 Assessed Metallic Systems	
TCOX11 Assessed Oxide Systems	
TCOX11 Assessed Sulfide Systems	
TCOX11 Assessed Fluoride Systems	14
TCOX11 Phases	
Common Phases for the TCOX Database	
TCOX11 Liquid Solution Phases	
TCOX11 Alloy Phases	
TCOX11 Gas Phase	
TCOX11 Solid Solutions Phases	
TCOX11 Stoichiometric Compounds	
TCOX11 Properties Data and Assessed Systems	
TCOX11 Viscosity for Ionic Liquids Assessed Systems	
TCOX11 Molar Volume Assessed Systems and Phases	
TCOX11 Surface Tension Assessed Systems	63
TCS Metal Oxide Solutions Database (TCOX) Revision History	65

About the TCS Metal Oxide Solutions Database (TCOX)

TCS Metal Oxide Solutions Database (TCOX) is a thermodynamic database for slags and oxides. The database integrates thermodynamic data plus properties data for molar volume, viscosity for ionic liquids, and surface tension.

- C	_	_
	=	
13	=	=/
		11

θ

The properties data for molar volume and viscosity for ionic liquids are included with TCS Metal Oxide Solutions Database (TCOX) starting with version 10 (TCOX10). Surface tension is included as of version 11 (TCOX11).

Intermetallic compounds, except carbides and nitrides, are not included in the database.

TCS Metal Oxide Solutions Database (TCOX) Revision History. The current version of the database is TCOX11.

The CALPHAD Method

The Thermo-Calc databases are developed with the CALPHAD approach based on various types of experimental data and theoretical values (e.g. those from first-principles calculations). It is based on the critical evaluation of binary, ternary, and for some databases, important higher order systems. This enables predictions to be made for multicomponent systems and alloys of industrial importance. Among these, the thermodynamic database is of fundamental importance.

The TCOX database, which was first released in 1992, is the result of a long-term collaboration with academia. For some historical information, see <u>TCS Metal Oxide Solutions Database (TCOX) Revision</u> <u>History</u>.

Learn more on our website about the <u>CALPHAD Method</u> and how it is applied to the Thermo-Calc databases.

Use Case Examples

There are examples available to both demonstrate the *validation* of the database and to showcase the types of *calculations* that can be used for different materials or application area such as process metallurgy, heat treatment, and more depending on the database.

Some use case examples of how the TCOX11 database can be used include the following.

- The intended application is for solid and liquid ionized materials, e.g. oxides or sulfides. This could be development of ceramics, slags, refractories, metallurgical processing (e.g. slag and liquid metal interactions), ESR slags, materials corrosion, Thermal Barrier Coatings (TBC), Yttria-Stabilised-Zirconia (YSZ), solid oxide fuel cell materials, sulfide formation, dephosphorization and desulfurization.
- This database can be used for fluoride and sulfide systems without oxygen.
- The liquid phase is described from liquid metal to oxide and/or fluoride, i.e. no pure liquid oxygen or fluorine is modeled.
- For sulfur, the liquid phase is described all the way from metal to sulfur.
- The database is compatible with the Process Metallurgy Module, which is used for advanced calculations involving slag, metal, and gas.
 - Go to the <u>Metal Slag and Oxides Database</u> page on our website where you can access an examples collection plus the technical information plus learn about its many applications with the <u>Process Metallurgy Module</u>. Also explore further applications of Thermo-Calc to <u>Refractory</u> <u>Oxides</u> and <u>Slags</u> including links to resources such as examples, publications, and more.

Combining Databases

It is possible to combine several databases to make calculations using Thermo-Calc. For more information related to a specific type of problem, contact one of our support specialists at <u>info@thermocalc.com</u>. The experts are available to make recommendations on the most suitable database to use for your needs.

TCS Metal Oxide Solutions Database (TCOX) Resources

Information about the database is available on our website and in the Thermo-Calc software online Help.

- **Website**: On our website the information is both searchable and the database specific PDFs are available to download.
- Online Help: Technical database information is included with the Thermo-Calc software online Help. When in Thermo-Calc, press F1 to search for the same information as is contained in the PDF documents described. Depending on the database, there are additional examples available on the website.

Database Specific Documentation

- The TCS Metal Oxide Solutions Database (TCOX) Technical Information PDF document contains version specific information such as the binary, ternary, and higher-order assessed systems, phases, and models. It also includes a list of the included elements, details about the properties (e.g. viscosity, molar volume, etc.), and a summary of the database revision history by version.
- The *TCS Metal Oxide Solutions Database (TCOX) Examples Collection* PDF document contains a series of validation examples using experimental data, and a set of calculation examples showing some of the ways the database can be used. Additional examples are available on the website.

Go to the <u>Metal Slag and Oxides Database</u> page on our website where you can access an examples collection plus the technical information plus learn about its many applications with the <u>Process Metallurgy Module</u>. Also explore further applications of Thermo-Calc to <u>Refractory</u> <u>Oxides</u> and <u>Slags</u> including links to resources such as examples, publications, and more.

Learn more on our website about the <u>CALPHAD Method</u> and how it is applied to the Thermo-Calc databases.

TCOX11 Elements, Systems, Phases, and Properties

Included Elements

There are 29 elements included in the most recent version of the database.

AI	Ar*	С	Са	Со	Cr	Cu	F	Fe	Gd
Н*	К	La	Mg	Mn	Мо	Ν	Na	Nb	Ni
0	Р	S	Si	Ti	V	W	Y	Zr	
* Ar and H are only included in the gas phase.									

Assessed Systems

The most recent version of the database contains assessments of these systems:

- 324 binary and 327 ternary systems to the full range of composition and temperature in the 29 element framework.
- 141 pseudo-ternary oxide systems, 39 oxy-fluoride and oxy-sulfide systems, and some higher order systems.

The most accurate calculations are obtained in or near these sub-systems and composition ranges.

Assessed Phases

The most recent version of the database contains 550 phases in total.

When using Console Mode, phases and constituents can be listed in the DATABASE (TDB) module and the Gibbs (GES) module. To show models and constituents for the phases in a chosen system, use the command LIST_SYSTEM with the option CONSTITUENTS in the TDB module.

IONIC_LIQ Phase

The liquid metal and slag (IONIC_LIQ) is described with the ionic two-sublattice liquid model [1985Hil; 1991Sun].

The advantage with the ionic two-sublattice model is that it allows a continuous description of a liquid which changes in character with composition. The model has successfully been used to describe liquid oxides, silicates, sulfides, fluorides as well as liquid short range order, molten salts and ordinary metallic liquids. At low level of oxygen, the model becomes equivalent to a substitutional solution model between metallic atoms.

Different composition sets of IONIC_LIQ designated by #1, #2 etc. (e.g. IONIC_LIQ#1) may be observed, which often represent the metallic and ionized liquid phases. Different composition sets also describe miscibility gaps frequently found in e.g. silicate systems. The #n suffix (where n is an integer) is generated dynamically by Thermo-Calc when using global minimization and therefore the identification of the phases should be determined from these compositions.

Common Phases for the TCOX Database

Other Phases

The TCOX11 database also contains solid oxides, silicates, fluorides, sulfides, carbides and nitrides, a gaseous mixture phase and solid solution alloy phases (FCC_A1, BCC_A2 etc). Many phases are modeled as solution phases (in all cases where it is meaningful). The solid solution phases such as spinel, mullite, corundum, halite, olivine, fluorite, etc. are modeled within the framework of the Compound Energy Formalism (CEF) [2001Hil].

Properties Data Assessed Systems

The assessed systems related to the properties data are included in this document.

For more information about the various thermophysical models, and when in Thermo-Calc, press F1 to search the online help. The details are found under a *General Reference* section.

Molar Volume

For the molar volume properties data, the molar volume parameters have been assessed or estimated as detailed in TCOX11 Molar Volume Assessed Systems and Phases.

Viscosity

For the viscosity properties data, the parameters have been assessed for the ionic liquid phase. The assessed systems are detailed in <u>TCOX11 Viscosity for Ionic Liquids Assessed Systems</u>.

Surface Tension

For the surface tension properties data, the parameters have been assessed for the ionic liquid phase. The assessed systems are detailed in TCOX11 Surface Tension Assessed Systems.

Below is a summary of the available parameters and variables for the databases when working in Thermo-Calc. There are differences when you are working in Console Mode versus Graphical Mode as well as if you use the TC-Python SDK. More details are described in the online help.

Property	Model Parameters	Variables to Show or Plot in Console Mode and TC-Python
Surface tension	SIGM	SURF (ION)
Dynamic viscosity	VISC	DVIS (LIQUID) DVIS (ION)
Kinematic viscosity		KVIS (LIQUID) KVIS (ION)
Molar volume	V0, VA	VM for a system VM (PHI) for phase PHI

References

- [1985Hil] M. Hillert, B. Jansson, B. Sundman, and J. Ågren, "A two-sublattice model for molten solutions with different tendency for ionization," Metall. Trans. A, vol. 16(1), 261–266, 1985.
- [1991Sun] B. Sundman, "Modification of the two-sublattice model for liquids," Calphad, vol. 15(2), 109–119, 1991.

[2001Hil] M. Hillert, "The compound energy formalism," J. Alloys Compd., vol. 320(2), 161–176, 2001.

[2021Zha] R. Zhang, S. Hallström, H. Mao, L. Kjellqvist, Q. Chen, Accurate Viscosity Prediction for Molten Slags: A New Model and Database. ISIJ Int. 61, 1379–1388 (2021).

TCOX11 Systems

In this section:

TCOX11 Assessed Metallic Systems	10
TCOX11 Assessed Oxide Systems	10
TCOX11 Assessed Sulfide Systems	13
TCOX11 Assessed Fluoride Systems	14

θ

TCOX11 Assessed Metallic Systems

No intermetallic phases, except carbides and nitrides, are included in the database.

- All metal-metal binaries are assessed except for Ca-W, Ca-Zr, Co-Na, Cr-Na, F-Na, Gd-La, Gd-Na, Gd-P, La-Na, La-Nb, La-P, La-Si, Mg-P, Mn-Na, Mo-Na, Na-Ni, Na-Ti, Na-V, Na-W, Na-Y, P-V, P-W, and P-Zr.
- Many ternary metallic systems are also assessed.
- If needed, more solid phases can be appended from TCFE (TCS Steel and Fe-alloys Database), TCNI (TCS Ni-based Superalloys Database), TCAL (TCS Al-based Alloy Database) or other appropriate databases. However, combining different databases should always be done with caution, since not always the same assessments of subsystems are used in the different databases.

TCOX11 Assessed Oxide Systems

These are the assessed oxide systems in the full range of composition and temperature.

Assessed Binary Oxide Systems

Al-O	Ca-O	Co-O	Cr-O	Cu-O	Fe-O	Gd-O	K-O	La-O	Mg-O
Mn-O	Mo-O	Na-O	Nb-O	Ni-O	P-O	Si-O	Ti-O	V-O	W-O
Y-0	Zr-O								

Assessed Ternary Oxide Systems, Me1-Me2-O

Assessed Quaternary Oxide Systems, Me1-Me2-Me3-O

Al-Ca-Co-O	Al-Ca-Cr-O	Al-Ca-Fe-O	Al-Ca-Gd-O	Al-Ca-K-O
Al-Ca-Mg-O	Al-Ca-Mn-O	Al-Ca-Na-O	Al-Ca-Nb-O	Al-Ca-Ni-O
Al-Ca-O-P	Al-Ca-O-Si	Al-Ca-O-Ti	Al-Ca-O-Y	Al-Ca-O-Zr
Al-Co-O-Si	Al-Co-O-Ti	Al-Cr-Fe-O	Al-Cr-Mg-O	Al-Cr-O-Ti
Al-Cr-O-Y	Al-Cu-O-Si	Al-Fe-K-O	Al-Fe-Mg-O	Al-Fe-Mn-O

Al-Fe-Na-O	Al-Fe-O-Si	Al-Fe-O-Ti	Al-Fe-O-Y	Al-Gd-O-Zr
Al-K-O-Si	Al-La-O-Y	Al-La-O-Zr	Al-Mg-K-O	Al-Mg-O-P
Al-Mg-O-Si	Al-Mg-O-Ti	Al-Mg-O-Y	Al-Mg-O-Zr	Al-Mn-O-Si
Al-Mn-O-Ti	Al-Na-O-P	Al-Na-O-Si	Al-Ni-O-Ti	Al-O-P-Si
Al-O-Si-Ti	Al-O-Si-Y	Al-O-Si-Zr	Al-O-Y-Zr	С-К-Nа-О
C-N-Na-O	Ca-Co-O-Si	Ca-Cr-Fe-O	Ca-Cr-O-Si	Ca-Cu-Fe-O
Ca-Cu-O-Si	Ca-Fe-Mg-O	Ca-Fe-Mn-O	Ca-Fe-O-P	Ca-Fe-O-Si
Ca-Fe-O-Ti	Ca-Gd-O-Si	Ca-K-N-O	Ca-K-O-Si	Ca-Mg-Mn-O
Ca-Mg-N-O	Ca-Mg-O-P	Ca-Mg-O-Si	Ca-Mg-O-Ti	Ca-Mg-O-Zr
Ca-Mn-O-P	Ca-Mn-O-Si	Ca-Mn-O-Y	Ca-N-Na-O	Ca-Na-O-Si
Ca-Nb-O-Si	Ca-Ni-O-Si	Ca-O-P-Si	Ca-O-Si-Ti	Ca-O-Si-V
Ca-O-Si-Y	Ca-O-Si-Zr	Ca-O-Y-Zr	Co-Cr-O-Si	Co-Cr-O-Ti
Co-Cu-La-O	Co-Cu-O-Si	Co-Fe-La-O	Co-Fe-Mn-O	Co-Fe-O-P
Co-Fe-O-Si	Co-La-Ni-O	Co-Mg-O-Si	Co-Mn-O-Si	Co-Ni-O-Si
Cr-Fe-Mn-O	Cr-Fe-Ni-O	Cr-Fe-O-Si	Cr-Fe-O-Ti	Cr-Fe-O-Y
Cr-La-Mn-O	Cr-Mg-O-Si	Cr-Mg-O-Ti	Cr-Mn-Ni-O	Cr-Mn-O-Si
Cr-Mn-O-Ti	Cr-Ni-O-Si	Cr-Ni-O-Ti	Cu-Fe-O-Si	Cu-Mg-O-Si
Fe-K-O-Si	Fe-Mg-O-Si	Fe-Mg-O-Ti	Fe-Mn-O-Si	Fe-Mn-O-Ti
Fe-Na-O-Si	Fe-Ni-O-Si	Fe-Ni-O-Ti	Fe-O-Si-Ti	Gd-La-O-Si
Gd-O-Si-Y	Gd-O-Si-Zr	K-Mg-N-O	K-N-Na-O	K-Na-O-Si
La-O-Y-Zr	Mg-Mn-O-Si	Mg-Mn-O-Ti	Mg-N-Na-O	Mg-Na-O-Si
Mg-Ni-O-Si	Mg-O-P-Si	Mg-O-Si-Ti	Mg-O-Si-V	Mg-O-Si-Y
Mg-O-Si-Zr	Mg-O-Y-Zr	Mn-Ni-O-V	Mn-O-Y-Zr	Na-O-P-Si
O-Ti-Y-Zr				

Assessed Higher Order Oxide Systems

Al-Ca-Co-O-Si	Al-Ca-Fe-O-Si	Al-Ca-Mg-O-Si	Al-Ca-Mg-O-Ti
Al-Ca-Mg-O-Zr	Al-Ca-Na-O-Si	Al-Ca-O-Si-Y	Al-Fe-Mg-O-Si
Al-Fe-Mn-O-Si	Al-Fe-Na-O-Si	Al-Gd-O-Y-Zr	Al-La-O-Y-Zr
Al-Mg-Na-O-Si	Ca-Fe-Mg-O-Si	Ca-Mg-Ni-O-Si	Ca-Mg-O-P-Si
Gd-La-O-Y-Zr	C-Cr-Fe-Mn-Ni-O		

TCOX11 Assessed Sulfide Systems

These are the assessed sulfide systems in the full range of composition and temperature.

Assessed Binary Sulfide Systems

AI-S	Ca-S	Co-S	Cr-S	Cu-S	Fe-S	Gd-S
K-S	La-S	Mg-S	Mn-S	Mo-S	Na-S	Nb-S
Ni-S	Si-S	Ti-S	V-S	W-S	Y-S	Zr-S

Assessed Ternary Sulfide Systems, Me1-Me2-S

Assessed Oxy-sulfide Systems

AI-O-S	Ca-O-S	Co-O-S	Cr-O-S	Cu-O-S	Fe-O-S
Mg-O-S	Mn-O-S	O-S-Si	Al-Ca-O-S	Al-Mg-O-S	Al-Mn-O-S
C-K-O-S	C-Na-O-S	Ca-Fe-O-S	Ca-Mg-O-S	Ca-O-S-Si	Cu-Fe-O-S
Fe-O-S-Si	Mg-O-S-Si	Mn-O-S-Si	Al-Ca-Mn-O-S		

TCOX11 Assessed Fluoride Systems

These are the assessed fluoride systems in the full range of composition and temperature.

Assessed Binary Fluoride Systems

AIF ₃	Ca-F	CoF ₂	CoF ₃	CrF ₂	CrF ₃	CuF	CuF ₂
FeF ₂	FeF ₃	GdF ₃	KF	LaF ₃	MgF ₂	MnF ₂	MoF ₄
NaF	NbF ₂	NbF ₅	NiF ₂	SiF ₄	VF ₂	YF3	ZrF ₄

Assessed Ternary Fluoride Systems

Al-Ca-F	Al-F-K	Al-F-Mg	Al-F-Na	Al-F-Zr	Ca-Co-F	Ca-Cr-F
Ca-Fe-F	Ca-F-Gd	Ca-F-K	Ca-F-La	Ca-F-Mg	Ca-F-Mn	Ca-F-Na
Co-F-Gd	Co-F-Mg	Co-F-Ni	Fe-F-Ni	F-Gd-Mg	F-Gd-Y	F-K-Mg
F-La-Zr	F-Mg-La	F-Mg-Na	F-Mg-Y			

Assessed Oxy-fluoride Systems

AI-F-O	Ca-F-O	Co-F-O	F-Mg-O	Al-Ca-F-O	С-F-К-О
C-F-Na-O	C-K-N-O	Ca-F-Mg-O	Ca-Fe-F-O	Ca-F-O-P	Ca-F-O-Si
F-K-N-O	F-Mg-O-Si	F-N-Na-O	Al-Ca-F-Mg-O	Al-Ca-F-O-Si	

TCOX11 Phases

In this section:

Common Phases for the TCOX Database	16
TCOX11 Liquid Solution Phases	17
TCOX11 Alloy Phases	17
TCOX11 Gas Phase	18
TCOX11 Solid Solutions Phases	18
TCOX11 Stoichiometric Compounds	34

Common Phases for the TCOX Database

The following lists common phase names and the corresponding Thermo-Calc database phase names for some key oxides.

Name in the Database	Common Name and Description
CORUNDUM	Corundum (AI_2O_3), Eskolaite (Cr_2O_3), Hematite (Fe_2O_3), Karelianite (V_2O_3), Tistarite (Ti_2O_3), CoTiO_3, Ilmenite ($FeTiO_3$), Geikielite ($MgTiO_3$), Pyrophanite ($MnTiO_3$), NiTiO_3. The ilmenite ((Co,Fe,Mg,Mn,Ni)TiO_3) crystal structure consists of an ordered derivative of the corundum structure. In corundum all cations are identical, but in ilmenite Me+2 and Ti+4 occupy different sublattices. Both the disordered and ordered end-members are described in the CORUNDUM phase in the database. Anti-site occupancy in the ilmenite structure is not modeled.
HALITE	Lime (CaO), CoO, Wustite (FeO), Periclase (MgO), Manganosite (MnO), Bunsenite (NiO).
ALABANDITE	Alabandite (MnS), Oldhamite (CaS), MgS, GdS, LaS, ZrS.
GARNET	Grossular ($Ca_3Al_2(SiO_4)_3$), Uvarovite ($Ca_3Cr_2(SiO_4)_3$), Spessartine ($Mn_3Al_2(SiO_4)_3$), Goldmanite ($Ca_3V_3(SiO_4)_3$). Other minerals part of the Garnet structure, such as Pyrope and Almandine, are not part of the database since they are not stable at ambient pressure.
M2O3A	This is the hexagonal La_2O_3 and Gd_2O_3 modifications.
M2O3B	This is monoclinic Gd ₂ O ₃ .
M2O3C	This is Bixbyite (Mn_2O_3) and cubic Gd_2O_3 and Y_2O_3 .
M2O3H	This is hexagonal La_2O_3 , Gd_2O_3 , and Y_2O_3 .
M2O3X	This is x-La ₂ O ₃ and high-temperature cubic Gd_2O_3 .
MELILITE	Gehlenite ($Ca_2Al_2SiO_7$), Fe-Gehlenite ($Ca_2Fe_2SiO_7$), Åkermanite ($Ca_2MgSi_2O_7$), Fe-Åkermanite ($Ca_2FeSi_2O_7$), and $CaCoSi_2O_7$.
OLIVINE	Calcio-olivine (Ca ₂ SiO ₄), Co ₂ SiO ₄ , Fayalite (Fe ₂ SiO ₄), Forsterite (Mg ₂ SiO ₄), Tephroite (Mn ₂ SiO ₄), Ni ₂ SiO ₄ , Kirschsteinite (CaFeSiO ₄), Monitcellite (CaMgSiO ₄), Glaucochroite (CaMnSiO ₄), Liebenbergite (Ni ₂ SiO ₄)
PSEUDO_ BROOKITE	Pseudobrookite (Fe ₂ TiO ₅), Karrooite (MgTi ₂ O ₅), Ti ₃ O ₅ , Al ₂ TiO ₅ , CoTi ₂ O ₅ , Armalcolite ((Fe,Mg)Ti ₂ O ₅), MnTi ₂ O ₅ .
LOWCLINO_ PYROXENE	Low clino-enstatite (MgSiO ₃), low clino-diopside (CaMgSi ₂ O ₆).
CLINO_ PYROXENE	Clino-enstatite (MgSiO ₃), clino-ferrosilite (FeSiO ₃), diopside (CaMgSi ₂ O ₆), Niopside (CaNiSi ₂ O ₆), Pigeonite ((Mg,Fe,Ca)Si ₂ O ₆), Hedenbergite (CaFeSi ₂ O ₆).
ORTHO_ PYROXENE	Enstatite (MgSiO ₃), ortho-Diopside (CaMgSi ₂ O ₆).

Name in the Database	Common Name and Description
PROTO_ PYROXENE	Proto-enstatite (MgSiO ₃), proto-diopside (CaMgSi ₂ O ₆).
PYRRHOTITE	Pyrrhoitite (FeS), CoS, CrS, NbS, NiS, TiS, VS.
RUTILE	Rutile (TiO ₂), Pyrolusite (MnO ₂), high-temperature VO_2 .
ALPHA_SPINEL	Tetragonal Hausmannite (Mn ₃ O ₄).
SPINEL	The cubic AB2O4-type spinel. Many end-members, solid solutions and combinations are described in the SPINEL phase: Magnetite (Fe_3O_4), cubic Hausmannite (Mn_3O_4), Guite (Co_3O_4), Spinel ($MgAl_2O_4$), Cuprospinel ($CrFe_2O_4$), Chromite ($FeCr_2O_4$), Hercynite ($FeAl_2O_4$), Coulsonite (FeV_2O_4), Vuorelainenite (MnV_2O_4), Magnesiocoulsonite (MgV_2O_4), CoV $_2O_4$, NiV $_2O_4$, Galaxite ($MnAl_2O_4$), Jacobsite ($MnFe_2O_4$), Magnesiochromite ($MgCr_2O_4$), Magnesioferrite ($MgFe_2O_4$), Magnaochromite ($MnCr_2O_4$), Thermaerogenite ($CuAl_2O_4$), Ulvöspinel ($TiFe_2O_4$), Trevorite ($NiFe_2O_4$), NiAl $_2O_4$, Co Fe_2O_4 , FeCo $_2O_4$, Co Mn_2O_4 , Cu Mn_2O_4 , Mg Mn_2O_4 , Ni Mn_2O_4 , Co $_2TiO_4$, Mg Ti_2O_4 , Mn Ti_2O_4 , Mn Ti_2O_4 , Ni $_2TiO_4$.
ZIRCON	Zircon (ZrSiO ₄), Xenotime (YPO ₄), GdPO ₄ , LaPO ₄ .

TCOX11 Liquid Solution Phases

The liquid phase contains all elements in the TCOX11 database except Ar and H. The ionic two-sublattice liquid model is used. The model may thus be used to describe liquid metal, oxides, sulfides, sulfur, fluoride, silicates etc. with the following formula:

(Al⁺³, Ca⁺², Co⁺², Cr⁺², Cu⁺¹, Fe⁺², Gd⁺³, K⁺¹, La⁺³, Mg⁺², Mn⁺², Mo⁺⁴, Na⁺¹, Nb⁺², Ni⁺², P⁺⁵, Si⁺⁴, Ti⁺², V⁺², W⁺⁶, Y⁺³, Zr⁺⁴)_P (AlO₂⁻¹, CO₃⁻², F⁻¹, NO₃⁻¹, O⁻², PO₄⁻³, S⁻², SiO₄⁻⁴, Va, AlN, C, C₃S₂Z_{1/6}, CoF₃, CoO_{3/2}, CrF₃, CrO_{3/2}, CuF₂, CuO, FeF₃, FeO_{3/2}, M₃S₂Z_{1/6}, MnO_{3/2}, MoO₃, N, NbF₅, NbO_{5/2}, PO_{5/2}, S, SiO₂, TiO_{3/2}, TiO₂, VO₂, VO_{3/2}, VO_{5/2})_Q

TCOX11 Alloy Phases

BCC_A2

Containing Al, Ca, Co, Cr, Cu, Fe, Gd, K, La, Mg, Mn, Mo, Na, Nb, Ni, P, S, Si, Ti, V, W, Y, and Zr with C, O and N modeled interstitially.

FCC_A1

Containing Al, Ca, Co, Cr, Cu, Fe, Gd, K, La, Mg, Mn, Mo, Na, Nb, Ni, P, S, Si, Ti, V, W, Y, and Zr with C, O and N modeled interstitially. FCC_A1 also describes cubic carbides and nitrades, and the two cubic oxides TiO and VO solid solutions.

HCP_A3

Containing Al, Ca, Co, Cr, Cu, Fe, Gd, K, La, Mg, Mn, Mo, Na, Nb, Ni, Si, Ti, V, W, Y, and Zr with C, N, and O modeled interstitially. HCP_A3 also describes hexagonal carbides and nitrades.

DHCP

La phase dissolving Al, Ca, Cu, Gd, Mg, Mn, Ni, and Y with O modeled interstitially.

CUB_A13

β-Mn, containing Al, Co, Cr, Cu, Fe, Mg, Mo, Nb, Ni, Si, Ti, V, and Zr with C and N modeled interstitially.

CBCC_A12

α-Mn, containing Al, Co, Cr, Cu, Fe, Mg, Mo, Nb, Ni, Si, Ti, V, and Zr with C and N modeled interstitially.

DIAMOND_FCC_A4

Diamond structure based on Si containing Al, C, Mn, Na, and P with O modeled interstitially.

GRAPHITE

This is pure carbon.

RED_P, WHITE_P

This is pure phosphorus. Phosphorus exists in two modifications: white (not stable at normal conditions) and red (up to the melting temperature of 579° C).

ORTHORHOMBIC_S, MONOCLINIC_S

This is pure sulfur. Sulfur exists in two modifications: orthorhombic (up to 95° C) and monoclinic (up to the melting temperature of 115° C).

TCOX11 Gas Phase

A reduced gas phase containing AL1F3, AR, CA, C1H4, C1O1, C1O2, CA1F2, F, F2, H, H2, H2O1, K, K1N1O3, K2, K2O1, K2O2, MG, MO, MO1O1, MO1O2, MO1O3, MO2O6, MO3O9, MO4O12, MO5O15, N, N1NA1O3, N2, NA, NA2, NA1O1, NA2O1, O, O10P4, O1P1, O2P1, O1S1, O1SI1, O2, O2S1, O3S1, O5P2, O1TI1, O6W2, O8W3, O9W3, O12W4, P2, P4, S2, Ti and V.

TCOX11 Solid Solutions Phases

The solid solution phases are modeled within the framework of the Compound Energy Formalism (CEF) [3]. These models take into account distribution of cations between sublattices, defects such as vacancies, antisites and ordering. 211 solutions are modeled in the database.

$Al_4C_3_D71$

This is AI_4C_3 with solubility of Si.

Alabandite

This is CaS (oldhamite), MnS (alabandite), MgS, GdS, LaS, and ZrS solid solution, with solubility of Co, Cr, Cu, Fe, and Y.

AlPO₄

There are three modifications (S1, S2, and S3) of AIPO₄ with solubility of SiO₂.

Anhydrite

This is (Ca,Co,Cu,Fe,Mg,Mn,Ni)SO₄.

Anorthite

This is high-temperature albite (NaAlSi₃O₈), KAlSi₃O₈ and Anorthite (CaO.Al₂O₃.2SiO₂) solid solution.

Apatite

This is $(Ca,Mg)_2(Gd,Y)_8(SiO_4)_6O_2$ solid solution dissolving Zr.

β-V-0

This is β -V-O.

Bronze

This is (Ca,Fe)_xV₂O₅ bronze.

Calcium Ferro-aluminates

- C3A1: This is Ca₃Al₂O₆ dissolving ferric Fe.
- C12A7: This is Ca₁₂Al₁₄O₃₂ dissolving ferric Fe. C12A7 is not stable in the anhydrous CaO-Al₂O₃ system. It is, however, important in practice, and included in the database. In the optimization it was treated as if it does not contain any water.
- C1A1: This is CaAl₂O₄ dissolving ferric Fe.
- C1A2: This is CaAl₄O₇ dissolving ferric Fe.
- C1A6: This is CaAl₁₂O₁₉ dissolving ferric Fe.
- A1C1F2: This is Al₂CaFe₄O₁₀ with a variation in Al/Fe: CaAlFe₂(Al,Fe)₃O₁₀.
- C2F: This is Ca₂Fe₂O₅ dissolving Al.

$Ca_2P_2O_7$ (α , β and γ)

 α , β and γ -Ca₂P₂O₇ dissolving Mg.

Ca_2SiO_4 (α and α')

 $\alpha\text{-Ca}_2\text{SiO}_4\text{-}\alpha^\prime\text{-Ca}_3\text{P}_2\text{O}_8 \text{ dissolving Gd, Mg, Mn, Y, and }\alpha^\prime\text{-Ca}_2\text{SiO}_4 \text{ dissolving Fe, Gd, Mg, Mn, P, and Y.}$

$Ca_3Co_2O_6$

This is Ca₃Co₂O₆ dissolving Cu.

$Ca_3Co_4O_9$

This is Ca₃Co₄O₉ dissolving Cu.

$Ca_3Mg_3P_4O_{16}$

This is $Ca_3Mg_3P_4O_{16}$.

$Ca_3P_2O_8$ (α and β)

 $\alpha\text{-}Ca_3P_2O_8$ dissolving Mg and Si and $\beta\text{-}Ca_3P_2O_8$ dissolving Mg.

$Ca_3S_3Fe_4O_x$

```
This is the oxy-sulfide 3CaS.4FeO-3CaS.4Fe<sub>2</sub>O<sub>3</sub>.
```

$Ca_3Y_2Si_3O_{12}$

```
This is Ca<sub>3</sub>(Gd,Y)<sub>2</sub>(SiO<sub>4</sub>)<sub>3</sub>.
```

$Ca_3Y_2Si_6O_{18}$

```
This is 3CaO.(Gd,Y)<sub>2</sub>O<sub>3</sub>.6SiO<sub>2</sub>.
```

$Ca_4Nb_2O_9_HT11$

This is the high-temperature $Ca_4Nb_2O_9$ phase with excess CaO.

Ca₄Nb₂O₉_LT21

This is the low-temperature Ca₄Nb₂O₉ phase with excess CaO.

$Ca_5P_2SiO_{12}$

This is Ca₅P₂SiO₁₂.

$CaCr_2O_4_A$

This is the high-temperature ${\rm CaCr_2O_4}$ dissolving Al and Fe.

CaF₂_S1

This is low-temperature CaF_2 dissolving CaO and MgF₂.

CaF₂_S2

This is high-temperature CaF₂ and CuF₂ dissolving CaO and MgF₂.

CaMO₃

This is CaMnO₃, CaTiO₃ and low-temperature CaZrO₃ dissolving Y.

CaN_2O_6

This is (Ca,Mg)(NO₃)₂ solid solution.

Carnegieite (α and β)

This is NaAlSiO₄ with solubility of Fe and Si.

CaSFeO

This is the oxy-sulfide CaS.FeO-CaS.Fe₂O₃.

CaSO₄_HT

This is (Ca,Co,Mg)SO₄.

CaV_2O_4

This is $CaFe_2O_4$, β -CaCr₂O₄, CaV_2O_4 and CaY_2O_4 solid solution dissolving Al. Prototype phase is CaV_2O_4 .

CaV_2O_6

This is (Ca,Co,Mg,Mn,Ni)V₂O₆.

CaY_4O_7

This is Ca(Gd,Y)₄O₇.

CaYAl₃O₇

This is Ca(Gd,Y)Al₃O₇.

CaYAlO₄

This is Ca(Gd,Y)AlO₄.

CaZrO₃_C

This is the cubic high-temperature CaZrO₃ phase dissolving Y.

Cementite

Fe₃C, Mn₃C with solubility of Al, Co, Cr, Mo, Nb, Ni, Si, V, W, N.

Chalcopyrite

This is an intermediate solid solution phase in the Cu-Fe-S system around the composition CuFeS₂.

Co₉S₈

This is Co₉S₈ dissolving Fe and Ni.

Columbite

This is (Ca,Co,Fe,Mg,Mn)Nb₂O₆ with excess FeO and MgO.

Cordierite

This is Al₄(Fe,Mg,Mn)₂Si₅O₈.

Corundum

This is Corundum (Al₂O₃), Eskolaite (Cr₂O₃), Hematite (Fe₂O₃), Karelianite (V₂O₃), Tistarite (Ti₂O₃), and (Co,Fe,Mg,Mn,Ni)TiO₃ Ilmenite solid solution.

$\mathrm{Cr}_{2}\mathrm{P}_{4}\mathrm{O}_{13}$

This is $Cr_2P_4O_{13}$ and $(Cr,Fe)_2V_4O_{13}$.

Cr_2S_3

This is Cr₂S₃ dissolving Fe.

$Cr_2Ti_2O_7$

This is $Cr_2Ti_2O_7$ with solubility of Al and Fe.

Cr_3S_4

This is Cr₃S₄ dissolving Fe, Mn, and Ni.

CrNbO₄

This is $CrNbO_4$ solid solution with excess Cr_2O_3 and Nb_2O_5 .

Cristobalite

This is SiO₂ with solubility of AlPO₄.

Cryolite

This is β -Na₃AlF₆ solid solution.

CuF_2

This is CrF₂ and low temperature CuF₂.

CuLa₂O₄

This is $CuLa_2O_4$ with solubility of Co.

Cu0

This is CuO with solubility of Co.

CuP_2O_6

This is (Co,Cu,Ni)P₂O₆.

Cuprite

This is Cu₂O with solubility of Na.

Delafossite

```
This is Cu(Al,Cr,Fe,La,Mn,Y)O<sub>2</sub>.
```

Digenite

This is Cu₂S solid solution with excess S and solubility of Fe, Mg, and Mn.

$DyMn_2O_5$

This is $Mn_2(Gd, Y)O_5$ solid solution. Prototype phase is $DyMn_2O_5$.

ETA_M5Si5

This is Cr₃Ni₂SiN with solubility of Mo, Fe.

$Fe_2O_{12}S_3$

This is the oxy-sulfides $(AI, Cr, Fe)_2(SO_4)_3$.

www.thermocalc.com

Fe₄N_LP1

This is Fe₄N with solubility of Co, Cr, Mn, Ni, C.

Fe_8Si_2C

This is Fe₈Si₂C with solubility of Mn.

FeF₃

This is (Al,Co,Cr,Fe)F₃.

$FeNb_{14}O_{36}$

This is (Co,Fe)Nb₁₄O₃₆.

FeNb₃₆0₉₁

This is (Co,Fe)Nb₃₆O₉₁.

FeNb₆₈0₁₇₁

This is (Co,Fe)Nb₆₈O₁₇₁.

FePO₄

This is (Fe,Mn)PO₄.

FeVO₄

This is (Al,Fe)VO₄.

Fluorite

This is high-temperature ZrO₂ solid solution with solubility of Al, Ca, Cr, Fe, Gd, La, Mg, Mn, Ni, Si, Ti, and Y.

Garnet

This is grossular (Ca₃Al₂Si₃O₁₂), uvarovite (Ca₃Cr₂Si₃O₁₂), spessartine (Mn₃Al₂Si₃O₁₂), and goldmanite (Ca₃V₂Si₃O₁₂).

$Gd_2Si_2O_7$

This is (Gd,La)₂Si₂O₇.

Gd_2SiO_5

This is (Gd,La)₂SiO₅.

GdF₃

This is high temperature (Gd,Y)F₃.

Halite

This is Lime (CaO), CoO, Wustite (FeO), Periclase (MgO), Manganosite (MnO), bunsenite (NiO) solid solution dissolving also Al, Cu, Cr, Gd, Na, Ti, V, Y, and Zr.

Hatrurite

This is Ca₃SiO₅ dissolving Gd and Y.

β1-Heazlewoodite

This is non-stoichiometric high-temperature Ni₃S₂ dissolving Co and Fe.

β2-Heazlewoodite

This is non-stoichiometric high-temperature Ni₄S₃ dissolving Fe.

K₂CO₃_S1

This is low temperature K_2CO_3 with solubility of Na.

K₂MgSiO₄ (lt and ht)

This is K_2MgSiO_4 with excess SiO_2 .

K₄Al₂₂O₃₅

This is β ''-Al₂O₃ K₄(Al,Fe)₂₂O₃₅ solid solution.

KAl₁₁0₁₇

This is β -Al₂O₃ K(Al,Fe)₁₁O₁₇ solid solution.

KAlSi₂O₆

This is $KAISi_2O_6$ -KFeSi $_2O_6$ -K $_2MgSi_5O_{12}$ solid solution.

ht-KAlSiO₄

This is $KAISiO_4$ - $K_2MgSi_3O_8$ solid solution with SiO₂ solubility.

Kappa_E21

This is Al(Fe,Mn)₃C solid solution.

KNO₃_S1

This is low temperature KNO₃ with solubility of Na.

KSI_Carbide

This is $Mo_6Fe_{11}C_5$ with solubility of Cr, W.

La_2MnO_4

This is $La_2(Mn,Ni)O_4$ solid solution dissolving Co.

La_2S_3

This is (Gd,La)₂S₃.

La₃Ni₂O₇

This is La₃Ni₂O₇ dissolving Co.

$La_4Ni_3O_{10}$

```
This is La<sub>4</sub>Ni<sub>3</sub>O<sub>10</sub> dissolving Co.
```

LaAP

This is a rhombohedral perovskite, La(Al,Co)O₃ dissolving Ca, Cu, Ni, and Y.

LaF₃

This is low temperature (Gd,La,Y)F₃.

LaYP

This is the orthorhombic perovskite, LaYO₃ solid solution.

M₂₃C₆_D84

This is $M_{23}C_6$ carbides, such as $Cr_{23}C_6$ and $Mn_{23}C_6$.

$\alpha - M_2 O_3$

This is hexagonal α -La₂O₃ and Gd₂O₃ solid solution dissolving Ca, Mg, Y, and Zr.

$\beta - M_2 O_3$

This is monoclinic β -Gd₂O₃ dissolving Al, Ca, Co, La, Mg, Y, and Zr.

www.thermocalc.com

$c-M_2O_3$

This is Mn₂O₃, cubic Gd₂O₃ and Y₂O₃ solid solution dissolving Al, Ca, Co, Cr, Fe, La, Mg, Ni, Ti, Y, and Zr.

$h-M_2O_3$

This is hexagonal La_2O_3 , Gd_2O_3 and Y_2O_3 solid solution dissolving Ca, Mg, Mn, and Zr.

$x-M_2O_3$

This is $x-La_2O_3$ and high-temperature cubic Gd_2O_3 solid solution dissolving Ca, Mg, Y, and Zr.

M₃C₂_D510

```
This is M_3C_2 carbide Cr_3C_2 dissolving Co, Mo, V, W.
```

$M_{4}O_{7}$

This is $(Ti,V)_4O_7$ solid solution dissolving Al and Mn.

M_5C_2

This is M_5C_2 carbide Mn_5C_2 dissolving Fe, N, Nb, V.

M₆C_E93

This is M₆C carbide, such as W₃Fe₃C dissolving Co, Cr, Mo, Nb, Ni, Si, V.

$M_{6}O_{11}$

This is $(Ti,V)_6O_{11}$ solid solution.

$M_{7}C_{3}D101$

This is M_7C_3 carbides, such as Mn_7C_3 and Cr_7C_3 , dissolving Al, Co, Fe, Mo, Nb, Ni, Si, V, W.

$M_{7}O_{13}$

This is $(Ti,V)_7O_{13}$ solid solution.

$M_{8}O_{15}$

This is $(Ti,V)_8O_{15}$ solid solution.

MC_Eta

This is MoC_{1-x} dissolving Ti, V, W.

MC_SHP

This is MoC, WC dissolving N.

Melilite

This is Gehlenite (Ca₂Al₂SiO₇), Fe-Gehlenite (Ca₂Fe₂SiO₇), Åkermanite (Ca₂MgSi₂O₇), Fe-Åkermanite (Ca₂FeSi₂O₇), and Ca₂CoSi₂O₇.

 $Mg_2P_2O_7$ (α and β)

This is α and $\beta\text{-Mg}_2\text{P}_2\text{O}_7$ dissolving Ca.

 $Mg_2V_2O_7$

This is $(Co, Mg, Ni)_2 V_2 O_7$.

$Mg_3N_2_D53$

This is (Ca,Mg)N₂.

 $Mg_3P_2O_8$

This is $Mg_3P_2O_8$ dissolving Ca.

$Mg_3V_2O_8$

```
This is (Co,Mg,Ni)<sub>3</sub>V<sub>2</sub>O<sub>8</sub>.
```

MgF_2

This is (Co,Fe,Mg,Mn,Ni,V)F₂.

MgWO₄-type

This is (Al,Fe)NbO₄ and (Co,Fe,Mg,Mn,Ni)WO₄ solid solution. Prototype MgWO₄.

$Mn_4Nb_2O_9$

```
This is (Co,Fe,Mg,Mn)<sub>4</sub>Nb<sub>2</sub>O<sub>9</sub>.
```

MoS₂

This is (Mo,W)S₂ solid solution.

Mullite

Mullite (around Al₆Si₂O₁₃) solid solution dissolving Fe.

$\mathrm{Na_2Al_{12}O_{19}}$

This is $Na_2Al_{12}O_{19}$ with solubility of Fe.

Na₂CaAl₄O₈

This is (K,Na)₂CaAl₄O₈ solid solution.

Na₂CO3-S1

This is low temperature Na_2CO_3 with solubility of K.

Na₂CO3-S2

This is high temperature $(K,Na)_2CO_3$ solid solution.

Na₂O (S1, S2, S3)

This is low, mid and high temperature $(K,Na)_2O$.

Na_2S

This is (K,Na)₂S.

$Na_2Si_2O_5(\alpha, \beta, \gamma)$

This is low, mid and high temperature (K,Na)₂Si₂O₅ solid solutions.

Na₂SiO₃

This is $(K,Na)_2SiO_3$ solid solution.

$NaAl_{11}O_{17}$

This is $NaAl_{11}O_{17}$ solid solution.

δ -NaAlO₂

This is high-temperature $\ensuremath{\mathsf{NaAlO}}_2$ with solubility of Si.

NaF

This is (K,Na)F.

α -NaFeO₂

This is NaCrO₂ and low-temperature NaFeO₂.

β -NaFeO₂

This is low-temperature $K(AI,Fe)O_2$ and $NaAIO_2$ and mid-temperature $NaFeO_2$ solid solutions with solubility of Si.

γ -NaFeO₂

This is high-temperature $K(AI,Fe)O_2$ and $NaFeO_2$ and mid-temperature $NaAIO_2$ solid solutions with solubility of Si.

NaNO₃-S1

This is low-temperature NaNO₃ with solubility of K.

NaNO₃-S2

This is high-temperature (K,Na)NO₃.

Nb_2O_5

This is Nb_2O_5 dissolving Mg and V.

Nb0₂

This is NbO₂ dissolving Fe.

Nepheline (α and β)

This is NaAlSiO₄ with solubility of Si.

γ-Nepheline

This is low-temperature (K,Na)AlSiO₄ and $K_2MgSi_3O_8$ solid solutions with solubility of Fe and Si.

Ni₆MnO₈-type

This is (Mg,Ni)₆MnO₈.

Ni₇S₆

This is Ni₇S₆ dissolving Fe.

Ni₉S₈

This is Ni₉S₈ dissolving Fe.

NiMnO₃

This is NiMnO₃ with Ilmenite structure.

www.thermocalc.com

NiNb₂O₆

This is $NiNb_2O_6$. This phase has the same structure as the Nb_2FeO_6 phase, but is modeled separately.

Olivine

This is Calcio-olivine $(Ca_2SiO_4) - Co_2SiO_4 - Fayalite (Fe_2SiO_4) - Forsterite (Mg_2SiO_4) - Tephroite (Mn_2SiO_4) - Ni_2SiO_4 - Kirschsteinite (CaFeSiO_4) - Monticellite (CaMgSiO_4) solid solution dissolving Cr and Cu.$

Pentlandite

This is ternary (Fe,Ni)₉S₈.

Perovskite

This is (Cr,Fe,Mn)LaO₃.

Pseudo-brookite

This is Fe_2TiO_5 . This is also Ti_3O_5 , Al_2TiO_5 and $(Co, Fe, Mg, Mn)Ti_2O_5$ with solubility of Ni and V.

Pyrite

```
This is Cattierite (CoS<sub>2</sub>), Pyrite (FeS<sub>2</sub>) – Hauerite (MnS<sub>2</sub>) – Vaesite (NiS<sub>2</sub>).
```

Pyrochlore

This is $(Gd,La)_2Zr_2O_7$ and $(Gd,La,Y)_2Ti_2O_7$ solid solution.

Pyroxenes

Modeling of low clino-pyroxene, clino-pyroxene, ortho-pyroxene, and proto-pyroxene solid solutions taking into account the distribution of cations between different sublattices.

- Low clino-pyroxene: This is low clino-enstatite (MgSiO₃) and low clino-diopside (CaMgSi₂O₆).
- Clino-pyroxene: This is clino-enstatite (MgSiO₃), clino-ferrosilit (FeSiO₃), diopside (CaMgSi₂O₆), niopside (CaNiSi₂O₆), pigeonite ((Mg,Fe,Ca)Si₂O₆), hedenbergite (CaFeSi₂O₆) dissolving Co.
- Ortho-pyroxene: This is enstatite (MgSiO₃) and ortho-diopside (CaMgSi₂O₆) with Fe solubility.
- Proto-pyroxene: This is proto-enstatite (MgSiO₃) and proto-diopside (CaMgSi₂O₆) dissolving Co, Cr, and Fe.

Pyrrhotite

This is Pyrrhotite (FeS) – CoS – CrS– NbS – NiS – TiS – VS solid solution dissolving Al, Cu, Gd, Mg, Mn, and Zr.

Quartz

This is SiO₂ with solubility of AlPO₄.

Rhodonite

```
This is MnO.SiO<sub>2</sub> dissolving Ca, Co, Fe, and Mg.
```

Rutile

This is $MnO_2 - TiO_2 - high$ temperature VO_2 solid solution dissolving Al and Zr.

α-Spinel

This is low-temperature tetragonal Mn_3O_4 solid solution dissolving Al, Co, Cr, Cu, Fe, Mg and Ni. Distribution of cations between tetrahedral and octahedral sites, as well as vacancies on the octahedral sites to model deviation from the ideal stoichiometry toward higher oxygen potential and interstitial Mn to model deviation toward excess manganese are taken into account.

Spinel

This is the cubic AB_2O_4 -type spinel solid solution containing Al-Ca-Co-Cr-Cu-Fe-Mg-Mn-Ni-Ti-O. Distribution of cations between tetrahedral and octahedral sites, as well as vacancies on the octahedral sites to model deviation from the ideal stoichiometry toward higher oxygen potential and interstitial Fe to model deviation toward excess iron are taken into account.

This is Spinel (MgAl₂O₄), Magnetite (Fe₃O₄), Cuprospinel (CrFe₂O₄), Hercynite (FeAl₂O₄), and many more.

Thio-spinel

This is the sulfur spinel. This has the same structure as the oxygen-spinel, but is modeled as a separate phase. This is $(Cu, Fe, Mn)Cr_2S_4 - Co_3S_4 - FeNi_2S_4 - Ni_3S_4$.

Ti₂N_C4

This is Ti_2N with solubility of C. Prototype TiO_2 .

Ti_5O_9

This is Ti₅O₉ dissolving V.

Tridymite

This is SiO₂ with solubility of AlPO₄.

V₂O_SS

This is V₂O solid solution.

V₃O₅-HT

This is high temperature V_3O_5 dissolving Al, Cr, Mn, and Ti.

$V_{5}O_{9}$

This is V_5O_9 dissolving Ti.

VO₂-LT

This is low temperature VO_2 , MOO_2 , and WO_2 .

Wollastonite

This is CaSiO₃ dissolving Fe, Mg, and Mn.

α -Y₂C₃

This is Y_2C_3 solid solution. Prototype Sc_3C_4 .

β -Y₂C₃

This is Y_2C_3 solid solution.

$Y_2 TiO_5$

This is (Gd,La,Y)₂TiO₅ solid solution.

Y₃NbO₇

This is Y_3NbO_7 solid solution with excess Nb_2O_5 and Y_2O_3 .

YAG

This is $(Gd,Y)_3(Al,Fe)_5O_{12}$ solid solution dissolving Cr and La.

YAM

This is $(Gd,Y)_4Al_2O_9$ and Cuspidine $(Ca_2Y_2Si_2O_9)$ solid solution dissolving La.

YAP

This is (Gd,Y)(Al,Co,Cr,Fe)O₃ solid solution dissolving Ca, Mn, and La.

YC_B1

This is YC solid solution. Prototype NaCl.

YNbO₄

This is $YNbO_4$ solid solution with excess Y_2O_3 .

www.thermocalc.com

Zircon

This is Zircon ($ZrSiO_4$) and (Gd,La,Y)PO₄ solid solution.

m-ZrO₂

This is monoclinic ZrO₂ solid solution dissolving Al, Ca, Cr, Gd, La, Ti, and Y.

t-ZrO₂

This is tetragonal ZrO₂ solid solution dissolving Al, Ca, Cr, Fe, Gd, La, Mg, Mn, Ni, Ti, and Y.

β-ZrTiO₄

This is ZrTiO₄ with solubility of Al.

Z_PHASE

This is ZrNbN with solubility of Fe, Mo, V.

TCOX11 Stoichiometric Compounds

339 stoichiometric compounds are modeled in the database. The **Status** column indicates whether the molar volume has been **Assessed**, **Estimated** or **Unassessed**. Molar volume is included with the database starting with version 10 (TCOX10). Also see <u>TCOX11 Molar Volume Assessed Systems and Phases</u>.

Stoichiometric Compound	Molar Volume Status
AF	Assessed
AL2P6SI4O26	Estimated
AL253	Assessed
AL2SIO4F	Assessed
AL3PO7	Estimated
ALBITE_LOW	Assessed
ALBITE_MONO	Assessed
ALF3_S2	Assessed
ALNB11029	Estimated
ALNB490124	Estimated
ALN_B4	Assessed
ALP3O9	Assessed

Stoichiometric Compound	Molar Volume Status
ANDALUSITE	Assessed
ANILITE	Assessed
C11A7F	Estimated
C13A6Z2	Estimated
C1A8M2	Estimated
C2A14M2	Estimated
C3A2M1	Estimated
C3A3F	Estimated
C4WF4	Assessed
C4WF8	Estimated
CA10P6O25	Estimated
CA10SI3O15F2	Estimated
CA10V6O19	Estimated
CA15CU18O35	Estimated
CA2ALF7	Estimated
CA2ALNBO6	Assessed
CA2CUO3	Assessed
CA2NA2SI2O7	Estimated
CA2NA2SI3O9	Estimated
CA2NB2O7	Assessed
CA2P6017	Estimated
CA2V2O7	Assessed
CA2ZRSI4012	Estimated
CA3COAL4O10	Assessed
CA3NA2SI6O16	Assessed
CA3NB2O8	Estimated
CA3TI2O7	Assessed
CA3TI8AL12O37	Estimated

Stoichiometric Compound	Molar Volume Status
CA3V2O8	Assessed
CA3WO6	Estimated
CA3ZRSI2O9	Assessed
CA4MG2P6O21	Estimated
CA4P2O9_A	Assessed
CA4P2O9_B	Assessed
CA4P6019	Estimated
CA4TI3O10	Assessed
CA4V2O9	Estimated
CA55I2O8F2	Estimated
CA6ZR19O44	Estimated
CA7P2SI2O16	Estimated
CA9V6018	Estimated
CAALF5_S1	Estimated
CAALF5_S2	Estimated
CACO3	Assessed
CACRSI4010	Estimated
CACU2O3	Assessed
CAMG301654	Estimated
CAMN2O4	Assessed
CANA2SI5O12	Estimated
CANA2SIO4	Assessed
CANA4SI3O9	Estimated
CAP2O6_A	Assessed
CAP2O6_B	Assessed
CAP206_G	Assessed
CAP4011_A	Assessed
CAP4011_B	Assessed

Stoichiometric Compound	Molar Volume Status	
CAV205	Assessed	
CAV307	Assessed	
CAV409	Estimated	
CAVO3	Assessed	
CAWO4	Assessed	
CAZR4O9	Estimated	
CF2	Estimated	
CHALCOCITE_ALPHA	Assessed	
CHALCOCITE_BETA	Assessed	
C01LA2O4	Assessed	
C02P207	Assessed	
C03LA4010	Assessed	
CO3P2O8	Assessed	
COVELLITE	Assessed	
CR151	Assessed	
CR3P2O8	Estimated	
CR3P07	Estimated	
CR4P6021	Estimated	
CR5PO10	Estimated	
CR556	Assessed	
CR758	Estimated	
CRNB25064	Estimated	
CRNB490124	Estimated	
CRNB9024	Estimated	
CRP309	Assessed	
CRPO4	Assessed	
CRVO4	Assessed	
CU2COO3	Assessed	

Stoichiometric Compound	Molar Volume Status
CU2P2O7	Assessed
CU2SO4	Assessed
CU2SO5	Assessed
CU2Y2O5	Assessed
CU3NB2O8	Estimated
CU3P2O8	Assessed
CUCRS2	Assessed
CUF	Assessed
CUFES2_LT	Assessed
CUGD2O4	Assessed
CUNB2O6	Assessed
CUPO3	Estimated
CUSPIDINE	Assessed
CW3F	Assessed
CWF	Assessed
DJURLEITE	Assessed
FE18P2O24	Estimated
FE2P207	Assessed
FE2PO5	Assessed
FE3P2O8	Assessed
FE3P4014	Estimated
FE3PO7	Assessed
FE4P6021	Estimated
FE7P6O24	Estimated
FE7P8O28	Estimated
FEAL2S4	Assessed
FENB25064	Estimated
FENB490124	Estimated

Stoichiometric Compound	Molar Volume Status	
FENB9O24	Estimated	
FEP206	Assessed	
FEP309	Estimated	
FEV2O6	Estimated	
GUGGENITE	Assessed	
K10MG5SI11032	Estimated	
K2CA2SI2O7	Estimated	
K2CA2SI9O21	Estimated	
K2CA3SI6O16	Estimated	
K2CA6SI4O15	Estimated	
K2CASIO4	Estimated	
K2FE2SI6O16	Estimated	
K2FESI308	Estimated	
K2FESI5012	Estimated	
K2MG5SI12O30	Estimated	
K2MGF4	Estimated	
K2MGN4012	Estimated	
K2S2	Estimated	
K2S3	Estimated	
K2S4	Estimated	
K2S5	Estimated	
K2S6	Estimated	
K2SI4O9_ALPHA	Estimated	
K2SI4O9_BETA	Estimated	
K2TI3O7	Estimated	
K2TI6O13	Estimated	
K2TIO3	Estimated	
K3ALF6	Estimated	

Stoichiometric Compound	Molar Volume Status
K3FCO3	Estimated
K3PO4_ALPHA	Estimated
K3PO4_BETA	Estimated
K3PO4_GAMMA	Estimated
K4CAN6O18	Estimated
K4CASI3O9	Estimated
K4CASI6O15	Estimated
K4FE4SI3O14	Estimated
K4FEO3	Estimated
K4MG2SI5O14	Estimated
K4P2O7_ALPHA	Estimated
K4P2O7_BETA	Estimated
K4P2O7_DELTA	Estimated
K4P2O7_GAMMA	Estimated
K4SIO4	Estimated
K4TIO4	Estimated
K5P3O10_ALPHA	Estimated
K5P3O10_BETA	Estimated
K8CASI10025	Estimated
K8TI5O14	Estimated
KCAF3	Estimated
KFESIO4	Estimated
KMG2AL15O25	Estimated
KMGF3	Estimated
KPO3_ALPHA	Estimated
KPO3_BETA	Estimated
KPO3_GAMMA	Estimated
KYANITE	Assessed

Stoichiometric Compound	Molar Volume Status
LA1S2	Assessed
LA2CR3012	Estimated
LA2CRO6	Assessed
LA2NB12O33	Estimated
LA2TI3O9	Estimated
LA3NBO7	Assessed
LA4SI3012	Estimated
LA4TI3012	Estimated
LA4TI9O24	Estimated
LAAL11018	Estimated
LAFE12019	Estimated
LANB3O9	Estimated
LANBO4	Assessed
LANIO3	Assessed
LARNITE	Assessed
M12C	Assessed
MERWINITE	Assessed
MG2C3	Estimated
MG2NA2SI6O15	Estimated
MG2NB34O87	Estimated
MG5NB4O15	Estimated
MGC2	Estimated
MGCO3	Assessed
MGNA2SI4O10	Estimated
MGP2O6	Assessed
MGP4011	Assessed
MN2P2O7	Assessed
MN2V207	Assessed

Stoichiometric Compound	Molar Volume Status
MN3N2	Assessed
MN3P2O8	Assessed
MN5SIC	Estimated
MN6N5	Estimated
MN9SI3O14S1	Estimated
MNF2_S1	Assessed
MNF3	Assessed
MNP2O6	Assessed
MNYO3_HEX	Assessed
MO2S3	Estimated
M04011	Estimated
M08023	Estimated
M09026	Assessed
MOF4	Estimated
M003	Estimated
NA10SIO7	Estimated
NA2CA3AL16O28	Estimated
NA2CA8AL6O18	Estimated
NA2FEO2	Estimated
NA2FESIO4	Estimated
NA2TI3O7	Assessed
NA2TI6O13	Assessed
NA2TIO3_S1	Assessed
NA2TIO3_S2	Assessed
NA2V2O6	Assessed
NA3ALF6_S1	Estimated
NA3FE5O9	Assessed
NA3FEO3	Assessed

Stoichiometric Compound	Molar Volume Status
NA3PO4	Estimated
NA4FE6O11	Estimated
NA4FEO3	Assessed
NA4P2O7	Assessed
NA4SIO4	Assessed
NA4TIO4	Assessed
NA4V2O7	Assessed
NA5AL3F14	Estimated
NA5FEO4	Assessed
NA5FESI4012	Estimated
NA6SI2O7	Assessed
NA6SI8O19	Assessed
NA6V208	Estimated
NA8FE2O7	Estimated
NA8FE6SI15O40	Estimated
NA8TI5014	Assessed
NAFE2O3	Assessed
NAFESI2O6	Assessed
NAMGF3	Estimated
NAPO3	Assessed
NAS2	Assessed
NBF5	Assessed
NBO1	Assessed
NI2P2O7	Assessed
NI3P2O8	Assessed
NI3S2_LT	Assessed
NI4NB2O9	Estimated
NINB14O36	Estimated

Stoichiometric Compound	Molar Volume Status
NINB36091	Estimated
NINB680171	Estimated
NIOCALITE_C10NS6	Estimated
NIS_LT	Estimated
P205_H	Assessed
P205_0	Assessed
P2O5_OP	Assessed
P2S5	Assessed
PSEUDO_WOLLASTONITE	Assessed
Q_ALMGZRO	Estimated
RANKINITE	Assessed
SAPPHIRINE	Estimated
SI3N4	Estimated
SI3P4O16	Estimated
SIC_B3	Assessed
SILLIMANITE	Assessed
SIP2O7_CUB	Assessed
SIP2O7_MONO	Assessed
SIP2O7_TETR	Assessed
SIS2	Assessed
SPHENE	Assessed
TI10019	Estimated
TI20O39	Assessed
TI2NB10029	Estimated
TI2S	Assessed
TI3O2	Estimated
TI4C2S2	Assessed
TI5P6O25	Estimated

Stoichiometric Compound	Molar Volume Status
TI8S10	Estimated
TI853	Estimated
T1859	Estimated
TI9017	Assessed
TINB24062	Estimated
TINB207	Estimated
TIO_ALPHA	Estimated
TIP207	Assessed
TIS2	Assessed
TIS3	Assessed
V205	Assessed
V305_LT	Assessed
V307	Assessed
V52O64	Assessed
V6013	Assessed
W02_72	Assessed
WO2_90	Assessed
WO2_96	Assessed
WO3_HT	Assessed
WO3_LT	Assessed
Y15C19_ALPHA	Estimated
Y15C19_BETA	Estimated
Y2S2A_Y2SI2O7	Assessed
Y2S2B_Y2SI2O7	Assessed
Y2S2D_Y2SI2O7	Assessed
Y2S2G_Y2SI2O7	Assessed
Y2SIO5	Assessed
ZR11NB4O32	Estimated

Stoichiometric Compound	Molar Volume Status
ZR13NB4O36	Estimated
ZR15NB4O40	Estimated
ZR2P2O9	Assessed
ZR3Y4O12	Assessed
ZR5NB2O15	Estimated
ZR6NB2O17	Estimated
ZR7NB2O19	Estimated
ZR8NB2O21	Estimated
ZRF4	Assessed
ZR0852	Assessed
ZRS2	Assessed
ZRTI2O6	Assessed
ZRTIO4_ALPHA	Estimated

TCOX11 Properties Data and Assessed Systems

You can find information on our website about the thermophysical <u>properties that can be</u> <u>calculated</u> with Thermo-Calc and the Add-on Modules. Additional resources are added on a regular basis so keep checking back or <u>subscribe to our newsletter</u>.

This section lists the assessed systems for each of the properties.

For more information about the various thermophysical models, and when in Thermo-Calc, press F1 to search the online help. The details are found under a *General Reference* section.

In this section:

ů

TCOX11 Viscosity for Ionic Liquids Assessed Systems	48
TCOX11 Molar Volume Assessed Systems and Phases	50
TCOX11 Surface Tension Assessed Systems	63

TCOX11 Viscosity for Ionic Liquids Assessed Systems

Using the CALPHAD approach, viscosity of oxide slags is critically assessed based on the evaluation of unary, binary, ternary and important higher order systems. By coupling to TCOX11, a two-sublattice ionic liquid viscosity model is employed to describe the ionic behavior of the oxide melts. It enables predicting viscosity of the oxide slags for various industrial applications, for example, iron-making and steel-making. The predicted viscosity is connected to the distribution and connectivity of species in the oxide melts, which gives predictions in the whole compositional range and a broad range of temperatures.

Model Description

For more information about the various thermophysical models, and when in Thermo-Calc, press F1 to search the online help. The details are found under a *General Reference* section.

Included Oxides

Al₂O₃, CaF₂, CaO, Cr₂O₃, CuO_x, FeO, Fe₂O₃, Gd₂O₃, K₂O, La₂O₃, MgO, MnO, MoO₂, MoO₃, Na₂O, NbO, Nb₂O₅, NiO, P₂O₅, SiO₂, TiO₂, V₂O₅, Y₂O₃, ZrO₂.

Unary Assessed Systems

The ^E subscript indicates a system is estimated based on other predictions and data of ternaries.

Al₂O₃

θ

```
CaF<sub>2</sub>, CaO<sup>E</sup>, CaS<sup>E</sup>, Cr<sub>2</sub>O<sub>3</sub><sup>E</sup>, CuO<sub>x</sub>
```

FeO_x

Gd₂O₃^E

K₂O

La₂O₃E

```
MgO, MnO, MoO<sub>2</sub><sup>E</sup>, MoO<sub>3</sub><sup>E</sup>
```

Na₂O, NbO^E, Nb₂O₅^E, NiO

 P_2O_5 SiO₂ TiO₂ V₂O₅ Y₂O₃^E

 $\rm ZrO_2^E$

Binary Assessed Systems

Al₂O₃-Gd₂O₃, Al₂O₃-La₂O₃, Al₂O₃-Na₂O, Al₂O₃-SiO₂

 $\mathsf{CaF}_2\mathsf{-}\mathsf{Al}_2\mathsf{O}_3,\,\mathsf{CaF}_2\mathsf{-}\mathsf{MgO},\,\mathsf{CaF}_2\mathsf{-}\mathsf{SiO}_2,\,\mathsf{CaF}_2\mathsf{-}\mathsf{TiO}_2,\,\mathsf{CaF}_2\mathsf{-}\mathsf{V}_2\mathsf{O}_5,\,\mathsf{CaO}\mathsf{-}\mathsf{Al}_2\mathsf{O}_3,\,\mathsf{CaO}\mathsf{-}\mathsf{P}_2\mathsf{O}_5$

 ${\rm CaO-SiO}_2,\,{\rm Cu}_{\rm X}{\rm O-SiO}_2$

Fe_xO-Na₂O, Fe_xO-TiO₂, Fe_xO-CaO, Fe_xO-SiO₂

K₂O-FeO_x, K₂O-Al₂O₃, K₂O-SiO₂

MgO-Al₂O₃, MgO-SiO₂, MnO-SiO₂, MnO-TiO₂

Na₂O-P₂O₅, Na₂O-SiO₂, Na₂O-V₂O₅, NiO-SiO₂

Ternary Assessed Systems

```
\label{eq:Al2O3-MgO-SiO2} Al_2O_3-MgO-SiO_2 \\ CaF_2-Al_2O_3-TiO_2, CaF_2-Al_2O_3-V_2O_5, CaF_2-CaO-Al_2O_3, CaF_2-CaO-Cr_2O_3, CaF_2-CaO-SiO_2, CaO-Al_2O_3-SiO_2, CaO-Al_2O_3-ZrO_2, CaO-CaS-SiO_2 \\ CaO-Cr_2O_3-SiO_2, CaO-MgO-SiO_2, CaO-NiO-SiO_2, CaO-SiO_2-Cr_2O_3 \\ CaO-SiO_2-TiO_2, Cu_xO-Al_2O_3-SiO_2 \\ Fe_2O_3-Na_2O-SiO_2, Fe_2O_3-Al_2O_3-SiO_2, Fe_xO-CaO-Al_2O_3, Fe_xO-CaO-SiO_2 \\ Fe_xO-MgO-SiO_2 \\ K_2O-FeO_x-SiO_2, K_2O-Al_2O_3-SiO_2, K_2O-Na_2O-SiO_2 \\ MnO-SiO_2-TiO_2 \\ \end{tabular}
```

 $\mathsf{Na_2O}\mathsf{-}\mathsf{Al_2O_3}\mathsf{-}\mathsf{SiO_2}, \mathsf{Na_2O}\mathsf{-}\mathsf{CaO}\mathsf{-}\mathsf{SiO_2}, \mathsf{Na_2O}\mathsf{-}\mathsf{MgO}\mathsf{-}\mathsf{SiO_2}, \mathsf{MgO}\mathsf{-}\mathsf{SiO_2}\mathsf{-}\mathsf{TiO_2}$

TCOX11 Molar Volume Assessed Systems and Phases

For the molar volume properties data included with the TCS Metal Oxide Solutions Database (TCOX), the molar volume parameters have been assessed or estimated. Below is the list of the status of the systems and phases that the estimated ones are marked with a subscript of E, otherwise they are assessed.

Also see TCOX11 Stoichiometric Compounds.

Model Description

For more information about the various thermophysical models, and when in Thermo-Calc, press F1 to search the online help. The details are found under a *General Reference* section.

Liquid Solution Phases

Unary Systems

CaO, MgO, Al₂O₃, SiO₂, MnO ^E, FeO, Fe₂O₃, CaF₂, MgF₂, TiO₂, K₂O, Cr₂O₃ ^E, V₂O₅ ^E, ZrO₂ ^E, P₂O₅ ^E, Nb₂O₅ ^E, NiO ^E, WO₃ ^E, La₂O₃ ^E, CoO ^E, MoO₃ ^E and CaS ^E

Binary Systems

Al₂O₃-CaO, Al₂O₃-MgO, Al₂O₃-SiO₂, CaF₂-Al₂O₃, CaF₂-CaO, CaF₂-MgO, CaF₂-MgF₂, CaF₂-SiO₂, CaF₂-TiO₂, CaO-SiO₂, Fe_xO-CaO, Fe_xO-SiO₂, K₂O-SiO₂, MgO-SiO₂, MnO-SiO₂

Ternary Systems

Al₂O₃-MgO-SiO₂, Al₂O₃-TiO₂-SiO₂, CaF₂-Al₂O₃-TiO₂, CaF₂-CaO-Al₂O₃, CaF₂-CaO-SiO₂, CaF₂-MgO-Al₂O₃, CaO-Al₂O₃-SiO₂, CaO-Al₂O₃-TiO₂, CaO-MgO-Al₂O₃, CaO-MgO-SiO₂, CaO-MnO-SiO₂, CaO-SiO₂-TiO₂, Fe_xO-Al₂O₃-SiO₂, Fe_xO-CaO-Al₂O₃, Fe_xO-CaO-MgO, Fe_xO-CaO-SiO₂, Fe_xO-MgO-SiO₂, Fe_xO-MnO-SiO₂

Quaternary and Quinary Systems

 $CaF_2-Al_2O_3-MgO-SiO_2, CaF_2-CaO-MgO-Al_2O_3, CaO-Al_2O_3-MnO-SiO_2, CaO-MgO-Al_2O_3-SiO_2, Fe_xO-CaO-Al_2O_3-SiO_2, Fe_xO-CaO-MgO-SiO_2, Fe_xO-CaO-MgO-Al_2O_3-SiO_2, Fe_xO-CaO-MnO-SiO_2$

Alloy Phases

BCC_A2

Al, Ca ^E, Co, Cr, Cu, Fe, Mg, Mn, Mo, Nb, Ni, P, S, Si, Ti, V, W, Y, Zr

Al-C, C-Ca^E, C-Co, C-Cr, C-Cu, C-Fe, C-Gd, C-Mg, C-Mn, C-Mo, C-Nb, C-Ni, C-P, C-S, C-Si, C-Ti, C-V, C-W, C-Y^E, C-Zr^E, Ca-O^E, Co-O, Cr-O^E, Cu-O, Fe-O^E, Gd-O^E, La-O^E, Mg-O, Mn-O, Ni-O^E, Ni-Ti, Ni-V, O-P^E, O-S, O-Si^E, O-Ti^E, O-V^E, O-W^E, O-Y^E, O-Zr^E, Ti-Zr

FCC_A1

Al, Ca, Co, Cr, Cu, Fe, Mg, Mo, Nb, Ni, P, S, Si, Ti, V, W, Zr

Al-C, Al-O ^E, C-Ca ^E, C-Co, C-Cr, C-Cu, C-Fe, C-Gd, C-Mg, C-Mn, C-Mo, C-Nb, C-Ni, C-P, C-S, C-Si, C-Ti, C-V, C-W, C-Y ^E, C-Zr, Ca-O ^E, Co-O ^E, Cr-O ^E, Cu-O ^E, Fe-O ^E, Gd-O ^E, La-O ^E, Mg-O, Mn-Ni, Mn-O, Mo-O, Nb-O, Ni-O ^E, Ni-Si, Ni-Ti, Ni-V, Ni-W, O-P ^E, O-S, O-Si ^E, O-Ti ^E, O-V ^E, O-W, O-Y ^E, O-Zr ^E

HCP_A3

Al, Co, Cr, Cu, Fe, Mg, Mn, Mo, Nb, Ni, Si, Ti, V, W, Y, Zr

Al-C, Al-O ^E, C-Ca ^E, C-Co, C-Cr,C-Cu ^E, Fe-C, C-Gd ^E, C-Mg ^E, C-Mn ^E, C-Mo, C-Nb, C-Ni ^E, C-Si ^E, C-Ti, C-V, C-W, C-Y ^E, C-Zr, Ca-O ^E, Cr-O ^E, Cu-O ^E, Fe-O ^E, Gd-O ^E, La-O ^E, Mn-O ^E, Mo-O ^E, Nb-O ^E, Ni-O ^E, O-Si ^E, O-Ti ^E, O-V ^E, O-W ^E, O-Y ^E, O-Zr ^E

DHCP

Al ^E, Ca ^E, Cu ^E, Mg ^E, Mn ^E, Ni ^E, Y ^E

Al-O^E, Cu-O^E, Gd-O^E, La-O^E

CUB_A13

Al ^E, Co ^E, Cr ^E, Cu ^E, Fe ^E, Mg ^E, Mn, Mo ^E, Nb ^E, Ni ^E, Si ^E, Ti ^E, V ^E, Zr ^E

AI-C E, C-Co E, C-Cr E, C-Cu E, C-Mg E, C-Mn E, C-Mo E, C-Nb E, C-Ni E, C-Si E, C-Ti E, C-V, C-Zr E

CBCC_A12

^{Al E}, Co ^E, Cr ^E, Cu ^E, Fe ^E, Mg ^E, Mn, Mo ^E, Nb ^E, Ni ^E, Si ^E, Ti ^E, V ^E, Zr ^E

AI-C^E, C-Co^E, C-Cr^E, C-Cu^E, C-Mg^E, C-Mn^E, C-Mo^E, C-Nb^E, C-Ni^E, C-Si^E, C-Ti^E, C-V, C-Zr^E

DIAMOND_FCC_A4

Al ^E, C ^E, P ^E, Al-O, O-P ^E

Solid Solution Phases

Anorthite

Al-Ca-O-Si, Al-Na-O-Si

Alabandite

Ca-S, Co-S, Cr-S, Cu-S, Fe-S, Gd-S, La-S, Mg-S, Mn-S, S-Y ^E, S-Zr

AlPO₄

Al-O-P

Anhydrite

Ca-O-S, Co-O-S, Cu-O-S, Fe-O-S, Mg-O-S, Mn-O-S, Ni-O-S

Apatite

Gd-O-Si, O-Si-Y ^E

Bronze

Ca-O-V, Fe-O-V E

Calcium Ferro-aluminates

C3A1: Al-Ca-O, Ca-Fe-O E

C12A7: Al-Ca-O E

C1A1: Al-Ca-O

C1A2: Al-Ca-O

C1A6: Al-Ca-O

C2F: Al-Ca-O, Ca-Fe-O

 $Ca_3P_2O_8$ (α and β)

Ca-O-P, Ca-O-Si ^E, Mg-O-P

 $Ca_2P_2O_7$ (α , β and γ)

Ca-O-P, Mg-O-P

 Ca_2SiO_4 (α and α')

Ca-O-P, Ca-O-Si, Fe-O-P, Gd-O-Si ^E, Mg-O-P, Mn-O-P, O-Si-Y ^E

Ca₃S₃Fe₄O_x

Ca-Fe-S^E, Ca-Fe-S-O (not assessed)

$Ca_4Nb_2O_9_HT11$

Ca-Nb-O E

 $Ca_4Nb_2O_9_LT21$

Ca-O, Ca-Nb-O ^E

 $Ca_3Co_2O_6$

Ca-Co^E, Ca-Cu^E, Ca-Co-O, Ca-Cu-O^E

 $Ca_3Co_4O_9$

This is $Ca_3Co_4O_9$ dissolving Cu.

Ca-Co^E, Ca-Cu^E, Ca-Co-O^E, Ca-Cu-O^E

$CaCr_2O_4_A$

Al-Ca-O^E, Ca-Cr-O^E, Ca-Fe-O

$CaF_{2}S1$

Ca ^E, Mg ^E, Ca-F

$CaF_{2}S2$

Ca^E, Cu^E, Mg^E, Ca-F

CaMO₃

O-Y ^E, Ca-Mn-O, Ca-O-Ti, Ca-O-Y, Ca-O-Zr, Mn-O-Y, O-Ti-Y, O-Y-Zr

Carnegieite (α and β)

Al-Na-O-Si, Fe-Na-O-Si

CaSFeO

Ca-Fe-S ^E

CaSO₄_HT

Ca-O-S, Co-O-S, Mg-O-S

CaV_2O_4

Al-Ca-O, Ca-Cr-O, Ca-Fe-O, Ca-O-V, Ca-O-Y

CaV_2O_6

Ca-O-V, Co-O-V, Mg-O-V, Mn-O-V, Ni-O-V

CaY_4O_7

Ca-Gd-O, Ca-O-Y E

CaZrO₃_C

O-Y ^E, Ca-O-Y, Ca-O-Zr

Chalcopyrite

S^E, Cu-S, Fe-S^E, Cu-Fe-S

Co₉S₈

Co-S^E, Fe-S^E, Ni-S^E, Co-Mg,

Columbite

```
Fe E, Ca-Fe <sup>E</sup>, Ca-Mg <sup>E</sup>, Ca-Nb <sup>E</sup>, Co-Fe, Co-Mg, Co-Nb, Ca-Fe-O <sup>E</sup>, Co-Mg-O <sup>E</sup>, Co-Nb-O, Fe-Mg-O <sup>E</sup>, Fe-Nb-O, Mg-Mn-O <sup>E</sup>, Mg-Nb-O, Mn-Nb-O
```

Cordierite

Al-Fe-O-Si, Al-Mg-O-Si, Al-Mn-O-Si

Corundum

```
Al-O, Co-O, Cr-O, Fe-O, Mg-O, Mn-O, Ni-O, O-Ti, O-V
```

```
Al-Cr-O, Al-Fe-O <sup>E</sup>, Al-Ni-O <sup>E</sup>, Cr-Fe-O, Cr-Mn-O <sup>E</sup>, Cr-O-Ti <sup>E</sup>, Cr-O-V <sup>E</sup>, Fe-Mn-O <sup>E</sup>, Fe-Ni-O <sup>E</sup>, Fe-O-Ti <sup>E</sup>, Fe-O-V <sup>E</sup>
```

Cr_2S_3

Cr-S, Fe-S

Cr_3S_4

Cr-S, Fe-S, Mn-S E

CrNbO₄

Cr, Nb, Cr-Nb, Cr-O, Nb-O ^E, Cr-Nb-O ^E

$Cr_2P_4O_{13}$

Cr-O-P^E, Cr-O-V^E, Fe-O-P^E, Fe-O-V

$Cr_2Ti_2O_7$

Al-O-Ti^E, Cr-O-Ti^E, Fe-O-Ti^E

CuF_2

Cr-F, Cu-F

CuLa₂O₄

Co-La-O, Cu-La-O

CuP_2O_6

Co-O-P, Cu-O-P ^E, Ni-O-P

Cu0

Cu-O, Co-O, Co-Cu-O

Cuprite

Cu-O, Na-O

Cristobalite

O-Si, Al-O-P

Delafossite

Al-Cu-O, Cr-Cu-O, Cu-Fe-O, Cu-Mn-O, Cu-O-Y

Digenite

Cu-S, Fe-S, Mg-S^E, Mn-S, Cu-Fe-S^E, Cu-Mg-S^E, Cu-Mn-S

$DyMn_2O_5$

Gd-Mn-O, Mn-O-Y

FeF₃

Al-F, Co-F, Cr-F, F-Fe

$Fe_2O_{12}S_3$

Al-O-S, Cr-O-S, Fe-O-S

$FeNb_{14}O_{36}$

Co-Nb-O ^E, Fe-Nb-O ^E

FeNb₃₆O₉₁

Co-Nb-O ^E, Fe-Nb-O ^E

$FeNb_{68}O_{171}$

Co-Nb-O ^E, Fe-Nb-O ^E

FePO₄

Fe-O-P, Mn-O-P

FeVO₄

Al-O-V, Fe-O-V

Fluorite

Al ^E, Ca ^E, Cr ^E, Fe ^E, Mg ^E, Mn ^E, Ni ^E, Si ^E, Y ^E, Zr ^E

Al-O ^E, Ca-O, Cr-O, Gd-O ^E, La-O ^E, O-Y ^E, O-Zr

Garnet

Al-Ca-O-Si

GdF₃

F-Gd, F-Y

$Gd_2Si_2O_7$

Gd-O-Si, La-O-Si

Gd_2SiO_5

Gd-O-Si, La-O-Si

Halite

O^E, Al-O^E, Ca-O, Co-O, Cr-O^E, Cu-O^E, Fe-O^E, Gd-O^E, Mg-O, Mn-O, Na-O, Ni-O, Ti-O, V-O^E

Ca-Mn-O, Fe-Mg-O, Fe-Ni-O

Hatrurite

Ca-O-Si, Gd-O-Si ^E, O-Si-Y ^E

 β 1-Heazlewoodite

S^E, Co-S, Fe-S^E, Ni-S^E,

β 2-Heazlewoodite

S^E, Fe-S^E, Ni-S^E,

LaF₃

F-Gd, F-La, F-Y

La_2S_3

Gd-S, La-S

La₂MnO₄

Co-La-O, La-Mn-O ^E, La-Ni-O

$La_3Ni_2O_7$

La-Ni-O

$La_4Ni_3O_{10}$

La-Ni-O

LaAP

Al-Ca-O, Al-La-O, Al-O-Y, Ca-Co-O, Ca-Cu-O, Ca-Fe-O, Ca-Ni-O, Co-La-O, Co-O-Y, Cu-La-O, Cu-O-Y, Fe-La-O, Fe-O-Y, La-Ni-O, Ni-O-Y,

LaYP

La-O, Y-O, La-O-Y

$\alpha - M_2 O_3$

Gd-O, La-O, Y-O, Zr-O ^E

$\beta - M_2 O_3$

Al-O, Ca-O, Co-O, Gd-O, La-O, Y-O, Zr-O ^E

c-M₂O₃

Al-O ^E, Ca-O, Co-O, Cr-O, Fe-O ^E, Gd-O ^E, La-O ^E, Mn-O ^E, Ni-O ^E, Y-O, Zr-O ^E

$h-M_2O_3$

Ca-O, Gd-O, La-O, Y-O ^E, Zr-O ^E

$x-M_2O_3$

Ca-O, Gd-O, La-O, Y-O, Zr-O ^E

M_4O_7

Ti-O, V-O, Al-O-V ^E, Mn-O-V ^E

$M_{6}O_{11}$

Ti-O, V-O

$M_{7}O_{13}$

Ti-O, V-O

MgF_2

Co-F, F-Fe, F-Mg, F-Mn, F-Ni, F-V

$Mg_2P_2O_7$ (α and β)

Ca-O-P, Mg-O-P

$Mg_2V_2O_7$

Co-O-V ^E, Mg-O-V, Ni-O-V ^E

$Mg_3P_2O_8$

Ca-O-P, Mg-O-P

$Mg_3V_2O_8$

Co-O-V, Mg-O-V, Ni-O-V

MgWO₄-type

Al-Nb-O, Al-O-W, Co-Nb-O, Co-O-W, Fe-Nb-O, Fe-O-W, Mg-Nb-O, Mg-O-W, Mn-Nb-O, Mn-O-W, Nb-Ni-O, Nb-O-W, Ni-O-W

$Mn_4Nb_2O_9$

Co-Nb-O, Fe-Nb-O ^E, Mg-Nb-O, Mn-Nb-O

MoS_2

Mo-S^E, S-W^E

Mullite

Al-O-Si ^E

$NaAl_{11}O_{17}$

Al-Na-O

$Na_2Al_{12}O_{19}$

Al-Na-O E

 α -NaFeO₂

Cr-Na-O, Fe-Na-O

β-NaFeO₂

O-Si, Al-Na-O, Fe-Na-O

γ -NaFeO₂

O-Si, Al-Na-O, Fe-Na-O

δ -NaAlO₂

Al-Na-O, Al-Na-O-Si

NbO₂

Nb-O

 Nb_2O_5

Mg-O^E, Nb-O, V-O^E

Nepheline (α and β)

Na-Al-Si-O

 γ -Nepheline

Na-Al-Si-O, Na-Fe-Si-O

Ni₆MnO₈-type

Mg-Mn-O, Mn-Ni-O ^E

Ni₇S₆

Fe-S^E, Ni-S^E

Ni₉S₈

Fe-S^E, Ni-S^E

NiMnO₃

Mn-O^E, Ni-O^E

NiNb₂O₆

Nb-Ni-O

Olivine

Ca-O-Si, Co-O-Si, Cr-O-Si, Cu-O-Si E, Fe-O-Si, Mg-O-Si, Mn-O-Si, Ni-O-Si

Pentlandite

Fe-S E, Ni-S E, Fe-Ni-S

Perovskite

Co-La, Co-Mn, Co-O, Cr-La, Cr-Mn, Cr-O, Fe-La, La-O, Co-La-O, Cr-La-O, Fe-La-O, La-Mn-O

Pseudo-brookite

Al-O-Ti, Al-O-V, Co-O-Ti, Mg-O-Ti, Mn-O-Ti ^E, Ni-O-Ti ^E

Pyrite

Co-S, Fe-S, Mn-S, Ni-S, Cu-Fe-S

Pyrochlore

Gd-O, La-O, Zr-O, Gd-La-O ^E, Gd-O-Ti (partly assessed), Gd-O-Y ^E, Gd-O-Zr ^E, La-O-Ti (partly assessed), La-O-Y^E, La-O-Zr ^E, O-Ti-Y (partly assessed), O-Ti-Zr ^E, O-Y-Zr (partly assessed)

Pyroxenes

Low clino-pyroxene: Mg-O-Si

Clino-pyroxene: Fe-O-Si, Mg-O-Si, Ni-O-Si, Ca-Mg-O-Si

Ortho-pyroxene: Fe-O-Si, Mg-O-Si, Ca-Mg-O-Si

Proto-pyroxene: Ca-O-Si, Co-O-Si, Cr-O-Si, Fe-O-Si, Mg-O-Si, Ni-O-Si

Pyrrhotite

Al-S ^E, Co-S, Cr-S, Cu-S, Fe-S, Gd-S, Mg-S ^E, Mn-S, Nb-S ^E, Ni-S, S-Ti, S-V ^E, S-Zr,

Quartz

O-Si, Al-O-P

Rhodonite

Ca-O-Si, Co-O-Si, Fe-O-Si, Mg-O-Si, Mn-O-Si

Rutile

Mn-O, O-Ti, O-Zr, Al-O-Ti

α -Spinel

Co-O^E, Cu-O^E, Mn-O^E, Ni-O^E

Al-Co-O ^E, Al-Cu-O, Al-Mn-O ^E, Al-Ni-O, Co-Cr-O ^E, Co-Fe-O ^E, Co-Mn-O ^E, Cr-Cu-O, Cr-Mg-O ^E, Cr-Mn-O ^E, Cr-Ni-O ^E, Cu-Fe-O ^E, Cu-Mn-O ^E, Fe-Mg-O ^E, Fe-Mn-O ^E, Fe-Ni-O ^E, Mg-Mn-O ^E, Ni-Mn-O ^E

Spinel

Al-O, Co-O ^E, Cr-O ^E, Cu-O, Fe-O ^E, Mg-O ^E, Mn-O ^E, Ni-O ^E

www.thermocalc.com

Al-Co-O^E, Al-Cr-O^E, Al-Cu-O, Al-Fe-O^E, Al-Mn-O^E, Al-Ni-O, Al-O-Ti, Al-O-V, Ca-Co-O, Ca-Cr-O, Ca-Cu-O, Ca-Fe-O, Ca-Mg-O, Ca-Mg-O, Ca-Ni-O, Co-Cr-O^E, Co-Cu-O, Co-Fe-O^E, Co-Mg-O^E, Co-Mn-O^E, Co-Mo-O, Co-Ni-O, Co-O-Ti, Cr-Cu-O, Cr-Fe-O^E, Cr-Mg-O^E, Cr-Mn-O^E, Cr-Mo-O, Cr-Ni-O^E, Cr-O-Ti^E, Cr-O-V^E, Cu-Fe-O^E, Cu-Mg-O^E, Cu-Mg-O^E, Cu-Mg-O^E, Cu-Mg-O^E, Cu-Mg-O^E, Cu-Mg-O^E, Cu-Mg-O^E, Cu-Mg-O^E, Fe-Mg-O^E, Fe-Mn-O^E, Fe-Mo-O^E, Fe-Ni-O^E, Fe-O-Ti^E, Fe-O-Ti^E, Fe-O-Ti^E, Mg-Mn-O^E, Mg-Mo-O^E, Mg-Ni-O^E, Mg-O-Ti, Mg-O-V, Mn-Mo-O, Mn-Ni-O^E, Mn-O-Ti, Mn-O-V, Mo-Ni-O, Ni-O-Ti, Ni-O-V

Thio-spinel

Co-S, Ni-S

Co-Cr-S, Co-Cu-S, Co-Fe-S, Co-Mn-S, Co-Ni-S, Cr-Cu-S, Cr-Fe-S, Cr-Mn-S, Cr-Ni-S, Cu-Ni-S , Fe-Ni-S, Mn-Ni-S,

Ti_50_9

0-Ti, 0-V

Tridymite

O-Si, Al-O-P

V₂0_SS

O-V ^E

V₃O₅-HT

O-Ti, O-V, Al-O-V ^E, Cr-O-V

 $V_{5}O_{9}$

0-Ti, 0-V

VO₂-LT

0-V, 0-W

Wollastonite

Ca-O-Si, Fe-O-Si, Mg-O-Si, Mn-O-Si

YAG

Al-Gd-O^E, Al-La-O^E, Al-O-Y, Cr-Gd-O^E, Cr-La-O^E, Cr-O-Y^E, Fe-Gd-O^E, Fe-La-O^E, Fe-O-Y

YAM

Al-Gd-O ^E, Al-La-O ^E, Al-O-Y ^E, Ca-O-Si, Gd-O-Si, La-O-Si, O-Si-Y

YAP

Al-Ca, Al-Gd, Al-La, Al-Y, Ca-Co, Ca-Cr, Ca-Fe, Ca-Mn ^E, Co-Gd, Co-La, Co-Y, Cr-Gd, Cr-La, Cr-Y, Fe-Gd ^E, Fe-La

Al-Gd-O, Al-La-O, Al-O-Y, Ca-Co-O, Ca-Cr-O, Ca-Fe-O, Co-Gd-O, Co-La-O, Co-O-Y, Cr-Gd-O, Cr-La-O, Cr-Y-O, Fe-Gd-O, Fe-La-O, Fe-O-Y, Gd-Mn-O, La-Mn-O, Mn-O-Y,

$Y_2 TiO_5$

Gd-Ti-O, La-Ti-O, Y-Ti-O

 Y_3NbO_7

Nb-O-Y

YNbO₄

Nb-O-Y

Zircon

Gd-Si, Gd-O-P, Gd-O-Si, O-P-Y, O-Si-Y ^E, O-Si-Zr

m-ZrO₂

AI-O ^E, Ca-O, Cr-O, Gd-O ^E, La-O ^E, Y-O ^E, O-Zr

t-ZrO₂

Ca-O, Cr-O, Gd-O ^E, La-O ^E, Y-O ^E, O-Zr,

β-ZrTiO₄

O-Ti-Zr

TCOX11 Surface Tension Assessed Systems

Model Description

For more information about the various thermophysical models, and when in Thermo-Calc, press F1 to search the online help. The details are found under a *General Reference* section.

Included Oxides

Al₂O₃, CaF₂, CaO, CaS, CoO, Co₂O₃, Cr₂O₃, CrO, CuO, Cu₂O, FeO, Fe₂O₃, Gd₂O₃, K₂O, La₂O₃, MgF₂, MgO, MoO₂, MoO₃, NiO, NbO, Nb₂O₅, Na₂O, P₂O₅, SiO₂, TiO₂, V₂O₅, WO₃, Y₂O₃, ZrO₂

Pseudo Binary Assessed Systems

Al₂O₃-CaF₂, Al₂O₃-CaO, Al₂O₃-Cr₂O₃, Al₂O₃-MgO, Al₂O₃-SiO₂, Al₂O₃-TiO₂ CaF₂-CaO, CaF₂-MgO, CaF₂-SiO₂, CaF₂-TiO₂, CaF₂-V₂O₅

CaO-FeO_x, CaO-CuO_x, CaO-P₂O₅, CaO-SiO₂, CaO-V₂O₅,

FeO_x-MnO, FeO_x-Na₂O, FeO_x-P₂O₅, FeO_x-SiO₂, FeO_x-TiO₂,

K₂O-SiO₂, MgO-SiO₂, MnO-SiO₂, Na₂O-SiO₂

Pseudo Ternary Assessed Systems

Al₂O₃-CaF₂-CaO, Al₂O₃-CaF₂-MgO, Al₂O₃-CaF₂-TiO₂, Al₂O₃-CaF₂-V₂O₅, Al₂O₃-CaO-Cr₂O₃, Al₂O₃-CaO-Fe₂O₃, Al₂O₃-CaO-Na₂O, Al₂O₃-CaO-MgO, Al₂O₃-CaO-SiO₂, Al₂O₃-CaO-TiO₂, Al₂O₃-CaO-V₂O₅, Al₂O₃-CaO-ZrO₂, Al₂O₃-FeO_x-SiO₂, Al₂O₃-MgO-SiO₂, Al₂O₃-MnO-SiO₂, Al₂O₃-Na₂O-SiO₂, Al₂O₃-SiO₂-TiO₂

FeO_x-MgO-SiO₂, FeO_x-MnO-SiO₂, K₂O-CaO-Al₂O₃, MgO-Na₂O-SiO₂

Pseudo Quaternary Ternary Assessed Systems

Al₂O₃-CaF₂-CaO-SiO₂, Al₂O₃-CaF₂-CaO-V₂O₅, Al₂O₃-CaF₂-MgO-SiO₂, Al₂O₃-CaF₂-K₂O-SiO₂, Al₂O₃-CaO-MnO-SiO₂, Al₂O₃-CaO-Na₂O-SiO₂, Al₂O₃-CaO-SiO₂-TiO₂, CaO-MgO-Al₂O₃-SiO₂, CaO-MgO-Na₂O-SiO₂, FeO_x-CaO-Al₂O₃-SiO₂, FeO_x-CaO-MgO-Al₂O₃-SiO₂, FeO_x-CaO-MgO-SiO₂, FeO_x-CaO-MgO-Al₂O₃-SiO₂

TCS Metal Oxide Solutions Database (TCOX) Revision History

Current Database Version

Database name (acronym):	TCS Metal Oxide Solutions Database (TCOX)
Database owner:	Thermo-Calc Software AB
Database version:	11.1
First release:	TCOX was released in 1992 under the name ION

Changes in the Most Recent Database Release

TCOX10.1 to TCOX10.2 and TCOX11 to TCOX11.1)

Software release: Version 2022a (December 2021/January 2022)

• Fixed an error in molar volume of FCC_A1 and BCC_A2 phases.

Previous Releases

TCOX10.1 to TCOX11

Software release: Version 2021b (June 2021)

New Element

• Addition of K

Binary, Ternary and Higher Order System Updates

- K: Assessed or added from literature 24 binary, 13 ternary and 14 higher order systems.
- Added carbide and nitride phases.
- The following systems have been assessed: Al₂O₃-CaO-MgO.
- The following systems have been reassessed: Al₂O₃-CaO-MgO-SiO₂.
- Reassessed Fe-solubility in MgSiO₃ (ortho-pyroxene).
- Updated all metallic systems to be the same as in the TCFE database.

Thermophysical Properties

- Addition of surface tension of the ionic liquid phase.
- Addition of viscosity of the ionic liquid phase for the systems containing K.

TCOX10.0 to TCOX10.1

Software release version 2021a (December 2020/January 2021)

Thermophysical Properties

- Added viscosity for the liquid oxides of MoO₂, MoO₃, NbO, Nb₂O₅ and Y₂O₃.
- Replaced the molar volumes of metallic liquid with the unified molar volumes, which is now consistent with all the other databases.
- Added molar volumes for both liquid and solid phases which had missing values in the previous version.

Binary, Ternary, and Higher Order Systems

- N: Added NO₃⁻¹ to the liquid phase.
- Fixed a bug in NiO that made the function not continuous at T=1800 K. These systems are reassessed due to the change in NiO description: Ca-Ni-O, Gd-Ni-O, La-Ni-O, Nb-Ni-O, Ni-O-P, Ni-O-Si, Ni-O-Ti, Ni-O-V, Ni-O-Y, CaO-NiO-SiO₂, MgO-NiO-SiO₂, Co-La-Ni-O.
- Updated NbO₂ to the latest description.
- Decreased stability of FeSiO₃ ortho-pyroxene (should not be stable, but was in version 10.0).
- The following systems are assessed: AIF₃-NaF, Ca(NO₃)₂, Mg(NO₃)₂, MgF₂-NaF, NaNO₃, NaF-Na₂CO₃, NaNO₃-Na₂CO₃, Na₂CO₃-Na₂S, Ca(NO₃)₂-Mg(NO₃)₂, Ca(NO₃)₂-NaNO₃, NaNO₃-NaF, Mg(NO₃)₂-NaNO₃. Estimations: Al₂O₃-Na₂O-ZrO₂, Na₂O-SiO₂-ZrO₂.
- The following systems have been reassessed: Updated liquid AIF3 to [2013 Lambotte]. AIF₃-CaF₂, AIF₃-MgF₂. Reassessed solubility of Al in V3O5_HT and M4O7. Reassessed solubility of Mg in V3O5_HT.
- Assessed a separation between liquid NaF and oxides in the following NaF-MeO_x systems: MeO_x= CuO, FeO_{3/2}, MnO_{3/2}, NbO_{5/2}, SiO₂.

TCOX9.0 to TCOX10.0

Software release version 2020b (June 2020)

New Thermophysical Properties

- Added/assessed molar volumes to the database, both for solid and liquid oxides and metals.
- Assessed viscosity for the liquid oxides. Included oxides: FeO, Fe₂O₃, CaO, MgO, Al₂O₃, SiO₂, CaF₂, Cr₂O₃, Na₂O, MnO, TiO₂, ZrO₂, P₂O₅, Gd₂O₃, La₂O₃, V₂O₅, NiO, CuO_x.

New Elements

• Addition of three new elements: N, Na, H (Hydrogen only in gas).

Binary, Ternary and Higher Order System Updates

- N: Added description of 17 binary and 28 ternary systems. Nitrogen is only assessed in metallic systems, so for example SiAIONs are not described in this database.
- Na: Assessed or added from literature eight binary metallic systems. Added Na-O from literature and assessed the Na-S system. Assessed eight ternary Me-Na-O and 11 higher order oxide systems.
- The following systems have been assessed: C-Ca-O and C-Mg-O.
- The following systems have been reassessed: Cr-O, Ca-Cr-O, Cr-Si-O, Ca-Cr-Si-O.
- Minor changes to the following systems: Co-Ni-O, Co-Fe-Ni-O, Co-Fe-Ti-O, Mo-O, Al-Mo-O, Mg-Mo-O, Mn-Mo-O, Mo-Ni-O, Nb-O, La-P-O, P-Zr-O, Ti-Zr-O.
- Assessed a separation between liquid metal and SiO₂ in the following Me-O-Si systems: Me = Ca, Gd, La, Mg, Mo, Nb, Ni, P, Ti, V, W, Y, Zr.

Other Updates and Improvements

- H: Added H, H2, C1H4 and H2O to the gas phase.
- Reassessed the vacancy fraction on the FCC metallic sublattice to get a Va-fraction of 1e-5 at liquidus (this was earlier 1e-4).

тсох8.0 то тсох9.0

Software release version: 2019b (June 2019)

- Addition of Ti: Assessed or added from literature all binary and a few ternary metallic systems. Assessed Ti-O and Ti-S binary systems. Assessed 19 ternary Me-Ti-O, two Me-Ti-S and 23 higher order oxide systems as indicated in the TCOX information sheet. Ti+2/+3/+4 is included in the liquid oxide, so the correct distribution of oxidation states in the slag can be calculated.
- The following systems have been assessed for version 9: CaO-SiO₂-VO_x. The correct distribution of oxidation states in the slag (+3/+4/+5) can now be calculated.
- The following systems have been reassessed for version 9: Ca-O-V, Mg-O-V, O-Si-V, and CaO-SiO₂- Y_2O_3 .
- The following systems have been estimated for version 9: MgO-SiO₂-VO_x, MnS-NbS, MnS-VS.
- Changed model for VO solid solution, from Halite to FCC_A1 to be consistent with cubic TiO. Reassessed solubility of V₂O₃ in CaO/CoO/FeO/MgO/MnO/NiO Halite due to change of model for VO. Assessed C-V-O, modeling complete solid solution between VC_x and VO_y (same applies to the C-Ti-O system).
- Merged CoV₂O₆ and NiV₂O₆ compounds to the CaV₂O₆ phase.

- Removed the SO₄⁻² species in the liquid phase.
- Minor changes to the following systems: W-O, Al-Cr-O, Ca-Ni-O, Co-O-V, Cr-Cu-O, Mg-Mn-O, Co-Mn-O, Co-Mo-O, Co-O-P, Nb-O-P, Ni-O-Si, Ni-O-V, Al-Ca-Ni-O, Al-Ni-O-Y, Ca-Co-Cu-O, Ca-Co-Ni-O, Co-Mn-O-Y, Fe-La-Ni-O, Gd-Mn-O-Si.

TCOX7.0 to TCOX8.0

Software release version: 2018b (June 2018)

- Addition of 6 new elements: Co, Mo, P, V, W, Ar (only in gas).
- Co: Assessed or added from literature all binary and a few ternary metallic systems. Added/Assessed Co-F, Co-O and Co-S. Assessed 29 ternary Co-Me₂-O, Co-Me₂-S and Co-Me₂-F systems and 13 higher order oxide systems as indicated in the TCOX information sheet.
- Mo: Assessed or added from literature all binary and a few ternary metallic systems. Added/Assessed Mo-O and Mo-S. Assessed 6 ternary Me1-Mo-O and Me1-Mo-S systems as indicated in the TCOX information sheet.
- P: Assessed or added from literature all binary and a few ternary metallic systems except F-P, Gd-P, La-P, Mg-P, P-V, P-W and P-Zr. Assessed 18 ternary Me1-O-P systems and 11 higher order oxide and oxy-fluoride systems as indicated in the TCOX information sheet.
- V: Assessed or added from literature all binary and a few ternary metallic systems except P-V. Assessed 13 ternary Me1-V-O systems as indicated in the TCOX information sheet.
- W: Assessed or added from literature all binary and a few ternary metallic systems except Ca-W, F-W and P-W. Assessed 13 ternary Me1-W-O systems as indicated in the TCOX information sheet.
- The following systems have been assessed for version 8: CaF₂-CoF₂/CrF₃/MnF₂, CoF₂-GdF₃/MgF₂/NiF₂, FeF₃-NiF₂, GdF₃-YF₃, LaF₃-ZrF₄, Al-Cu-S, Al-La-S, Ca-Y-S, Al-Ni-S and Cr-Ni-S.
- The following systems have been reassessed for version 8: F-Fe, Mg-Ni-O-Si, CaO-NiO-SiO₂, Mn-Ni-O, Al-Ni-O, Mn-Si-O, Al-Mn-Si-O, Al-Fe-Mn-Si-O, Ca-Mn-Si-O, Ni-Si-O, Ca-Ni-Si-O, Mg-Ni-Si-O, Al-Cu-O, Al-Cu-Si-O.
- The following systems have been estimated for version 8: La-Mg-S, Mn-Zr-S, Gd-Mg-S, Fe-Zr-S, Fe-Gd-S, Fe-La-S, Cu-La-S, Cu-Si-S, Nb-S, Fe-Nb-S
- The large complex gaseous phase has been removed. A reduced gaseous mixture is used including only the important species. If a complete gas is needed, it should be appended from the SGTE substance database.
- α -Ca₂SiO₄ and α '-Ca₃P₂O₈ is merged into one phase. Reassessed solubility of Fe, Gd, Mg, Mn and Y due to change of models.
- Removed Ni-solubility in Corundum.

TCOX6.0 to TCOX7.0

Software release version: 2017a (March 2017).

- Addition of 6 new elements: Cu, F, S, Gd, La and Nb.
- Cu: Added all binary and a few ternary metallic systems. Added Cu-O and Cu-S. Assessed Al₂O₃-Cu-O, CaO-Cu-O, Cu-Cr-O, Cu-Fe-O, Cu-OLa₂O₃, Cu-OMgO, Cu-Mn-O, Cu-Nb-O, Cu-Ni-O, Cu-Si-O, Cu-Y-O, Al₂O₃-Cu-O-SiO₂, CaO-Cu-Fe-O, CaO-Cu-O-SiO₂, Cu-Fe-O-SiO₂, Cu-O-MgO-SiO₂, Cu-Cr-S, Cu-Fe-S, Cu-Mg-S, Cu-Mn-S, Cu-Ni-S, Cu-O-S, Cu-Fe-O-S.
- F: Added liquid and solid AlF₃, CaF₂, CrF₂, CrF₃, CuF, CuF₂, FeF₂, FeF₃, GdF₃, LaF₃, MgF₂, MnF₂, NbF₂, NbF₅, NiF₂, SiF₄, YF₃, ZrF₄. Assessed Ca-CaF₂, CaF₂-CaO, GdF₃-Gd₂O₃, MgF₂-MgO, AlF₃-CaF₂, AlF₃-MgF₂, AlF₃-ZrF₄, CaF₂-FeF₂, CaF₂-GdF₃, CaF₂-LaF₃, CaF₂-MgF₂, MgF₂-GdF₃, MgF₂-LaF₃, MgF₂-YF₃, AlF₃-Al₂O₃-CaF₂-CaO, CaF₂-CaO-MgF₂-MgO, CaF₂-Cr₂O₃, CaF₂-CaO-FeO-Fe₂O₃-FeF₂, CaF₂-SiO₂-CaO-SiF₄, Al₂O₃-CaF₂-MgO, Al₂O₃-CaF₂-SiO₂, MgF₂-MgO-SiO₂. Estimated CaF₂-CaS, CaF₂-CaSO₄, AlF₃-SiO₂.
- S: Assessed or added from literature: Al-S, Ca-S, Cr-S, Cu-S, Fe-S, Mg-S, Mn-S, Ni-S, Si-S, Y-S, Al-Fe-S, Ca-Fe-S, Ca-Mg-S, Ca-Mn-S, Cr-Fe-S, Cu-Cr-S, Cu-Fe-S, Cu-Mg-S, Cu-Mn-S, Cu-Ni-S, Fe-Mg-S, Fe-Mn-S, Fe-Ni-S, Mg-Mn-S, Al-O-S, Ca-O-S, Cu-O-S, Fe-O-S, Mg-O-S, Mn-O-S, Si-O-S, CuS-SiO₂, FeS-SiO₂, MnS-SiO₂, Al₂O₃-CaO-CaS, Al₂O₃-MgO-MgS, Al₂O₃-MnO-MnS, CaO-SiO₂-CaS, MgS-SiO₂, Al₂O₃-CaO-CaS-MnO-MnS, Cu-Fe-O-S, CaF₂-CaS. Estimated Gd-S, La-S, CaF₂-CaS, CaF₂-CaSO₄.
- Gd: Added all binary metallic systems except Gd-La. Added Gd-O and estimated Gd-S. Assessed Al₂O₃-Gd₂O₃, CaO-Gd₂O₃, Cr₂O₃-Gd₂O₃, Fe₂O₃-Gd₂O₃, Gd₂O₃-MgO, Gd₂O₃-NiO, Gd₂O₃-SiO₂, Gd₂O₃-ZrO₂, Al₂O₃-Gd₂O₃-ZrO₂, CaO-Gd₂O₃-SiO₂, Gd₂O₃-SiO₂-ZrO₂.
- La: Added all binary metallic systems except Gd-La, La-Nb and La-Si. Added La-O and estimated La-S. Assessed Al₂O₃-La₂O₃, CaO-La₂O₃, Cr₂O₃-La₂O₃, Cu-O-La₂O₃, Fe-O-La₂O₃, La₂O₃-Mn-O, La₂O₃-Nb₂O₅, La₂O₃-NiO, La₂O₃-SiO₂, La₂O₃-ZrO₂, Al₂O₃-La₂O₃-Y₂O₃, Al₂O₃-La₂O₃-ZrO₂.
- Nb: Added all binary metallic systems except La-Nb. Assessed Nb-O. Assessed Al₂O₃-Nb₂O₅, CaO-Nb₂O₅, Cr₂O₃-Nb₂O₅, CuO-Nb₂O₅, Fe-Nb-O, La₂O₃-Nb₂O₅, MgO-Nb₂O₅, MnO-Nb₂O₅, Nb₂O₅-NiO, Nb₂O₅-SiO₂, CaO-Nb₂O₅-SiO₂.
- The following systems have been assessed for version 7: Al₂O₃-CaO-Cr₂O₃, SiO₂-Fe-Mn-O, CaO-FeO-MnO, Al₂O₃-Fe-Mn-O, SiO₂-Al₂O₃-Fe-Mn-O.
- The following systems have been estimated for version 7: CaO-Mn-O-Y₂O₃, Fe-O-NiO-SiO₂.
- Added assessment of Mg-Mn-O and Cr₂O₃-MgO-SiO₂ from literature.
- The following systems have been reassessed for version 7: CaO-SiO₂-ZrO₂, CaO-SiO₂-Y₂O₃, Al₂O₃-CaO-SiO₂-Y₂O₃.
- modeled Fe₂O₃ solubility in MULLITE.
- modeled ZrO₂ solubility in APATITE.
- modeled Y₂O₃ solubility in ZIRCON.
- Merging CF (CaO.Fe₂O₃), α-CACR₂O₄ and CAY₂O₄ to one phase: CAV2O4.

TCOX5.1 to TCOX6.0

Software release version: 2015a (June 2015)

The following systems have been assessed for version 6: Al-Ca-Fe-Si-O, Al-Ca-Mg-Zr-O, Al-Ca-Y-O, Al-Fe-Mg-O, Al-Mg-Y-O, Al-Mn-Si-O, Al-Si-Zr-O, Ca-Fe-Mg-O, Ca-Fe-Mg-Si-O, Ca-Mg-Zr-O, Ca-Si-Y-O, Ca-Si-Zr-O, Ca-Y-Zr-O, Fe-Mg-Si-O, Mg-Si-Y-O and Mg-Y-Zr-O.

- Added assessments of Mg-Y and Mg-Zr from literature.
- The following systems have been reassessed for version 6: Al-Ca-Zr-O, Al-Cr-Zr-O, Al-Mg-Zr-O, Al-Ni-O, Al-Zr-O, Fe-Mg-O, Fe-Mg-Si-O, Fe-Y-O, Fe-Zr-O, Mn-Si-O and Ni-Si-O.
- The following systems have been estimated for version 6: Al-Ca-Si-Y-O, C-Ca, C-Mg, Ca-Cr, Ca-Mn, Ca-Y, Ca-Mg-Mn-O, Ca-Ni-Si-O, Mg-Ni-Si-O and Mg-Si-Zr-O.
- Added interaction for Ca-Fe in HCP identical to FCC and BCC. This makes the HCP phase not stable in the binary phase diagram. Reassessed liquid phase.
- Modified Al-Fe-O CORUNDUM.
- modeled CaO solubility in ORTHO_PYROXENE.
- Estimation of Al-Fe-Mn-O to fit a Mn/Si steel in Fe-Al-Mn-Si-O.
- Added a parameter in liquid Al-Si-O to get rid of a miscibility gap at high SiO₂ in Al-Mn-Si-O in equilibrium with Mn.
- Added Ca₂FeSi₂O₇ (MELILITE) and estimated the "binaries" Ca₂FeSi₂O₇-Ca₂MgSi₂O₇ and Ca₂FeSi₂O₇-Ca₂AlFeSiO₇.
- Merged YAM and CUSPIDINE phases to get complete solubility between Y4Al2O9 and Ca2Si2Y2O9.
- Corrected a misprint in liquid Al-Ca-Zr-O, so the miscibility gap was removed.
- Changed back to the old description for ANORTHITE.

TCOX4.0 TO TCOX5.1

TCOX5 released in October 2012 and TCOX5.1 released in January 2013.

- Included Y₂O₃ and ZrO₂. Also added available descriptions for Y-O and Zr-O from literature, with small modifications due to model compatibility with TCOX. Many binary and ternary systems with these two new components are assessed for TCOX5.
- Al₂O₃-CaO-Fe-O, Al₂O₃-CaO-MnO, Al₂O₃-Fe-O-SiO₂, CaO-Cr-O-SiO₂, CaO-MnO-SiO₂, MgO-Al₂O₃-CrO-Cr₂O₃, FeO-Fe₂O₃-MgO-SiO₂ have been added from published assessments or assessed for TCOX5.
- Merged phases Mn_2O_3 and cubic Y_2O_3 to one single phase: M2O3C.
- Removed all intermetallic phases and carbides. Updated metallic liquid, fcc, bcc etc. to the latest available descriptions.

- Changed model for oxygen in DIAMOND_FCC_A4. Oxygen is now modeled as an interstitial element, instead of using a substitutional model as before. This change was done due to computational problems with the DIAMOND_FCC_A4 phase when Si was not defined in the system.
- Modification of the ANORTHITE phase stability in the Al₂O₃-CaO-MgO-SiO₂ system.
- Simplified the model for the ALPHA_SPINEL phase due to computational problems.
- Reassessed Al-Cr-O and Cr-O due to an unwanted miscibility gap in the Al₂O₃-Cr₂O₃ system close to Cr-O.
- Removed charged species from the gas phase.
- Al₂O₃-CaO-NiO, Al₂O₃-NiO, CaO-Cr-O, CaO-Mn-O, Cr-O-MgO, Cr-O-SiO₂ and MgO-NiO are reassessed.
- Added Ca to the SPINEL phase. Solubility of Ca in Fe_3O_4 and Mn_3O_4 has been assessed.
- Added ASSESSED_SYSTEMS. It is now possible to calculate the Me-O binaries using the BINARY module in Thermo-Calc.