

A practical 3D bounding surface plastic sand model for geotechnical earthquake engineering application

Zhao Cheng, Ph.D., P.E.

Itasca Consulting Group, Inc June 2018

Outline

- Brief review of 3 typical models:
 - UBCSand, PM4Sand, DM04 (Dafalias-Manzari 2004 version)
 - All these three models are available at Itasca UDM website:

https://www.itascacg.com/software/user-defined-constitutive-models-udm

- Formulation of the new model
- Performance of the new model

Evaluations of selected models

UBCSand	1.	Practice-friendly?	
(Version 904aR)	2.	CRR-(N1)60 curve	
,	3.	CSR-N curves	
PM4Sand	4.	Damping at large strain	
(Version 3) DM04 (Version 2004)	5.	Overlapped loop problem	
	6.	Lode angle effect	
	7.	Static or Dynamic?	
	8.	Various densities need different parameters Kσ effect	
	9.		
	10.	Kα effect	
	11.	Formula	
	12.	General 3D model?	

Red: Not Good; Green: Good; Black: Medium; Dash: Unknown.

Practice-friendly?

UBCSand

PM4Sand

DM04

UBCSand & PM4Sand

Input parameters are easily calibrated from in-situ measurements

DM04

- * Requires high quality lab test data for calibration
- Unfortunately, the parameters calibrated from the lab-based sands usually cannot be directly used in practice for in-situ sands

$CRR-(N_1)_{60}$ curve

UBCSand

PM4Sand

DM04

- **UBCSand** is the first model matching it to the empirical curve.
- PM4Sand follows.
- DM04 not matching.

CRRs indicated by the NCEER/NSF (Youd et al 2001) curve for a given corrected SPT blow-count, or $(N_1)_{60}$, should just induce liquefaction in an element if it is applied in 15 uniform cycles for an initial effective overburden stress of 1 atm during a DSS simulation.

CRRs at a M-7.5 earthquake.

(After Beaty & Byrne, 2011)

GEESD, June 11, 2018 Z. Cheng, Itasca Consulting Group, Inc.

CSR-N curves

UBCSand

PM4Sand

DM04

- **DM04** may be too steep (b = 0.55 to 0.61).
- **PM4Sand** seems in the gentle side (b = 0.24 to 0.28) heavily rely on lab-data.
- **UBCSand** seems in the most possible range for in-situ sands (b = 0.34 to 0.41).

(After Boulanger, Montgomery, Ziotopoulou, 2017)

Damping at large strain

UBCSand PM4Sand

DM04

(After Beaty & Byrne, 2011)

(After Boulanger & Ziotopoulou, 2015)

(After Cheng, Dafalias & Manzari, 2013)

Overlapped loop problem

UBCSand

PM4Sand

DM04

 DM04 & UBCSand have overlapped loops and no more accumulated shear strains thereafter.

(After Carey & Kutter, 2017)

Lode angle effect

UBCSand

PM4Sand

SANISand

UBCSand

PM4Sand

DM04

(After Boulanger & Ziotopoulou, 2015)

Static? Monotonic?

UBCSand

PM4Sand

DM04

UBCSand:

- "A new parameter m_static was added to permit the model to function in a simpler manner when used during pre-earthquake static analyses." (Beaty & Byrne, 2015).

PM4Sand:

- "PM4Sand has been validated for use with the dynamic procedure only."
- "If the monotonic behavior was more important than the CRR values, then a different calibration would be required." (Boulanger & Ziotopoulou, 2015).

DM04:

- Excellent performance on monotonic loading/unloading. (Dafalias & Manzari, 2004)

Various densities need different parameters?

UBCSand

PM4Sand

DM04

Material #	UBCSand / PM4Sand	DM04
Sand #1	Parameter set #1	
Sand #2	Parameter set #2	One set for all
Sand #3	Parameter set #3	

$$(N_1)_{60} = 6$$

$$(N_1)_{60} = 14$$

$$(N_1)_{60} = 26$$

Z. Cheng, Itasca Consulting Group, Inc. Slide 12 GEESD, June 11, 2018

Kσ effect

UBCSand

PM4Sand DM04

$$K_{\sigma} = \frac{CRR_{\sigma'_{v_0}}}{CRR_{\sigma'_{v_0} = 1 \ atm}}$$

(After Beaty & Byrne, 2011)

(After Boulanger, Montgomery, Ziotopoulou, 2017)

Z. Cheng, Itasca Consulting Group, Inc. Slide 13 GEESD, June 11, 2018

Kα effect

UBCSand PM4Sand DM04

$$K_{\alpha} = \frac{CRR_{\alpha}}{CRR_{\alpha = 0}}$$

$$\alpha = \frac{\tau_{static}}{\sigma'_{v0}}$$

Not recommended for routine practice. (NCEER/NSF Workshop, Youd et al 2001 & NASEM, 2016)

(After Ziotopoulou & Boulanger, 2015)

Formula

UBCSand PM4Sand DM04

	UBCSand	PM4Sand	DM04
Difficulty	Relatively simple	Overly complex and lengthy	Relatively simple
Documentation	More details required	Well documented	Well documented

General 3D?

UBCSand PM4Sand DM04

UBCSand	2D Plane-Strain
PM4Sand	2D Plane-Strain
DM04	General 3D

Even for a 2D plane-strain model, the out-of-plane stress should be in formulated and documented!

Cyclic DSS using 3D model:

Evaluation Summary

Note: Red: Not Good; Green: Good; Black: Medium

	UBCSAND (Version 904aR)	PM4SAND (Version 3)	DM04 (Version 2004)	
Practice-friendly?	Yes	Yes	No	
CRR-(N ₁) ₆₀ curve	Match semi-empirical	Match semi-empirical	Not matching	
CSR-N curves	Ok OK, maybe in the gentle side		Overly steep	
Damping at large strain	Overly large damping	Ok	Overly large damping	
Overlapped loop problem	Yes	No	Yes	
Lode angle effect	Same as MC model	No	Yes, but not convex	
Static ? Monotonic ?	Depends	Not for static; Need different calibration	OK	
Various densities	Need different calibration	Need different calibration	One set of parameters	
Kσ effect	Empirical match	Empirical match	Not matching	
Kα effect (not suggested for design)	Trend OK	Trend OK	Not matching	
Formula difficulty Formula documentation	Relatively simple Not well documented	Overly complex & lengthy Well documented	Relatively simple Well documented	
General 3D model?	No, only for plain-strain	No, only for plain-strain	Yes	

The New model

- Based on DM04 formula
- Targets are to overcome the aforementioned shortcomings (red → green)
 - General 3D
 - As simple as possible
 - Practice-friendly
 - Matches to the empirical relations

Key modifications

- DM04 is a Void-Ratio (e) based model.
- New model is a Relative-Density (D_r) based model, because D_r can be easily and reliably calibrated from (N_1)₆₀ or (q_{c1N}), e.g.,

$$D_r = \sqrt{\frac{(N_1)_{60}}{46}}$$

$$D_r = 0.268 \ln q_{c1N} - b_x$$

Elastic moduli

- **DM04**: $G = f(e)P_{atm}(\frac{p}{P_{atm}})^{0.5}$, $f(e) = 250\frac{(2.97-e)^2}{1+e}$
- This model: $G = f(D_r)P_{atm} \left(\frac{p}{P_{atm}}\right)^{0.5}$

1. Andrus & Stokoe (2000): $V_{s1} = 93.2(N_1)_{60}^{0.231}$

$$2. \quad V_S = V_{S1} \left(\frac{P_{atm}}{\sigma'_{vo}} \right)^{0.25}$$

3.
$$G = \rho_{sat}V_s^2$$

4.
$$\rho_{sat} = \frac{(G_S + e)\rho_W}{1 + e}$$
, , typical $G_S = 2.65$

5.
$$p = \frac{(1+2K_0)}{3}\sigma'_{vo}$$
, typical $K_0 = 0.5$

$$f(D_r) = \frac{\rho_{sat}}{P_{atm}} \sqrt{\frac{3}{(1 + 2K_0)}} V_{s1}^2$$

Elastic moduli

$$G = f(D_r)P_{atm} \left(\frac{p}{P_{atm}}\right)^{0.5}$$
1,200
1,000
Lab-based Toyoura Sand

400
200
0.0
0.2
0.4
0.6
0.8
1.0

Lab-based sand data support the linear relation too!

Modified/New Formula

- Elasticity $[G = g_0(D_r + C_{Dr})P_{atm}\left(\frac{p}{P_{atm}}\right)^{0.5}]$
- Critical State [2 or 3-parameter in terms of Dr]
- Lode's angle dependence [Eekelen locus, always convex]
- State Parameter $[I_r = D_r \ln \left(\frac{p}{p_c}\right)]$
- Bounding/Dilatancy Surfaces [...]
- Plastic Modulus […]
- Plastic Volumetric Strain [...]
- Fabric-Dilatancy Tensor […]
- Stiffness Damage [new]

- Not just $D_r = \frac{e_{max} e}{e_{max} e_{min}}$
- Formula relatively simple
- Every modification has its reason

Practice-friendly

As simple as:

zone property relative-density-initial 0.35 range group 'LooseSand' zone property relative-density-initial 0.55 range group 'MedianSand' zone property relative-density-initial 0.75 range group 'DenseSand'

input initial stress components as initial-condition parameters

All other parameters are defaults or internally-calibrated.

This model has been internally calibrated to match NCEER/NSF (Youd et al, 2001) CRR curve for clean sands.

Fill

$$(N_1)_{60} = 6$$
, Dr = 0.35

$$(N_1)_{60} = 14$$
, $Dr = 0.55$

$$(N_1)_{60} = 26$$
, Dr = 0.75

Rock

Practice-friendly, to refine?

If you wish to refine, e.g.,

$$\phi_{cv} = 36 \text{ (degrees)}$$
 $e_{max} = 0.8, e_{min} = 0.5$
 $Q = 9.5, e_{max} = 0.9$

- (Optional) Use an spread sheet to estimate g_0 and C_{Dr} ;
- (Usually not needed) Other refinements if you wish;
- K_{cvc} should be calibrated lastly:
 - Try 3 or more single-zone DSS simulations with various relative densities to obtain 3 or more pairs (D_r, K_{cyc}) to match the target CRRs.
 - Plot the pairs in an Excel sheet to fit with a **quadratic** curve, to see if with a satisfactory correction or not:
 - If Yes, input (A₀, A₁, A₂);
 - If No, input the pairs as a table-type parameter.

$$K_{cyc} = A_0 - A_1 D_r + A_2 D_r^2$$

 $(A_0, A_1, A_2) = (3.8, -7.2, 3.0)$

$CRR-(N_1)_{60}$

Liquefaction in 15±0.25 uniform cycles versus $(N_1)_{60}$, DSS numerical tests at initial vertical effective stress 1 atm & $K_0 = 0.5$.

CSR-N

G/G_{max} & damping

constant-p triaxial test simulation

G/G_{max} & damping

constant-p triaxial test simulation

Kσ effect

For lab-based sands?

- All default and internally-calibrated parameters are for in-situ sands.
- For lab-based sands, more calibration efforts required.

Lab-based Toyoura sands	Model defaults		
$\phi_{cv} = 31.7$	$\phi_{cv} = 33$		
$g_0 = 200, C_{Dr} = 1.12$	$g_0 = 1.24e3, C_{Dr} = 0.01$		
$D_{rc0} = 0.115, \lambda_r = 0.05, \xi = 0.7$	Q = 10, R = 1		
(3-parameter critical-state equation)	(2-parameter critical-state equation)		

zone property friction-critical 31.7
zone property elasticity-1 200 elasticity-2 1.12
zone property critical-state-1 0.115 critical-state-2 0.05 critical-state-3 0.7

Toyoura sand Monotonic undrained triaxial simulation

Toyoura sand Monotonic drained triaxial simulation

Slide 35

Centrifuge simulation

Wharf simulation

Dr = 0.50 Dr = 0.65

Conclusions

	UBCSAND (Version 904aR)	PM4SAND (Version 3)	PM04 (Version 2004)	This Model (Version 1.0)
Practice-friendly?	Yes	Yes	No	Yes
CRR-(N ₁) ₆₀ curve	Match semi-empirical	Match semi-empirical	Not matching	Match semi-empirical
CSR-N curves	Ok	OK, maybe in the gentle side	Overly steep	Ok
Damping at large strain	Overly large damping	Ok	Overly large damping	Ok
Overlapped loop problem	Yes	No	Yes	No
Lode angle effect	Same as MC model	No	Yes, but not convex	Yes, always convex
Static ? Monotonic ?	Depends	Not for static; Need different calibration	ОК	ОК
Various densities	Need different calibration	Need different calibration	One set of parameters	One set of parameters
Kσ effect	Empirical match	Empirical match	Not matching	Intrinsically match
Kα effect (not suggested for design)	Trend OK	Trend OK	Not matching	Not satisfying for dense sands
Formula difficulty Formula documentation	Relatively simple More details required	Overly complex & lengthy Well documented	Relatively simple Well documented	Relatively simple Well documented
General 3D model?	No, only for plain-strain	No, only for plain-strain	Yes	Yes

