
1 INTRODUCTION 

The conventional Mohr-Coulomb (MC) model is widely used in civil engineering, and in partic-
ular for factor of safety predictions in slope engineering, using the strength reduction method. The 
MC model uses a constant modulus for both loading and unloading. If the modulus is taken as the 
initial slope from a stress-strain lab test curve, it will underestimate the deformation before failure; 
if the modulus is approximated as an averaged modulus measure before failure, the unloading-
reloading modulus may not be appropriate, and could be responsible for unrealistic lift prediction 
behind a retaining wall after excavation. The plastic hardening (PH) model is based on the work 
by Schanz et al. (1999), who extended the hyperbolic Duncan-Chang non-linear elastic model 
(Duncan & Chang 1970) in an elasto-plastic framework to provide a more realistic pre-failure 
stress-strain behavior, and a more robust unloading/reloading scheme. The PH model is charac-
terized by different modulus for primary loading and unloading/reloading. Also, the yield surface 
is not fixed in the principal stress space in the PH model; instead it can expand as a function of 
plastic strain; this yield surface behavior is referred to as plastic strain hardening. There are two 
types of hardening, namely shear hardening and volumetric (cap) hardening, in this model. 

In this paper, we mainly present the implementation of the model with a semi-implicit algo-
rithm into FLAC3D, and demonstrate some verification examples. The detail calibration for the 
material parameters and validation are presented in Cheng & Lucarelli (2016) and a design appli-
cation is presented in Lucarelli & Cheng (2016). These two, together with this paper, consist of a 
series of papers on the PH model in the finite differential software platform.   

In this document, all stresses are assumed to be effective stresses and are taken positive for 
extension. Principal stresses are labeled in the following order: 1 ≤ 2 ≤ 3. 

2 FORMULATION 

The PH model is based on the conventional elasto-plastic theory that assumes that the elastic and 
plastic strain increments are additive, i.e.  ∆ = ∆ + ∆ .  
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2.1 Incremental Elastic Law 

The elastic behavior of the PH model is derived in the context of hypo-elasticity: 

∆𝑝 = −𝐾∆𝜀𝑣
𝑒 (1.a) 

∆𝑠𝑖𝑗 = 2𝐺∆𝜖𝑖𝑗
𝑒 (1.b) 

where p is the mean pressure defined as 𝑝 = −𝜎𝑖𝑖/3, 𝜀𝑣
𝑒 is the volumetric elastic strain defined as

𝜀𝑣
𝑒 = 𝜀𝑖𝑖, and 𝑠𝑖𝑗 and 𝜖𝑖𝑗

𝑒  are the deviatoric stress tensor and deviatoric elastic strain tensor, respec-
tively. K and G are the elastic bulk and shear moduli, which can be derived from the elastic un-
loading-reloading Young’s modulus, Eur, and the elastic unloading-reloading Poisson’s ratio, 𝑣, 
using the relations 

𝐾 =
𝐸𝑢𝑟

3(1−2𝑣)
(2.a) 

𝐺 =
𝐸𝑢𝑟

2(1+𝑣)
(2.b) 

In the PH model, the Poisson’s ratio is assumed to be constant with a typical value of 0.2 (if 
otherwise not provided at input), while the Young’s modulus, and 𝐸𝑢𝑟 is a stress-dependent pa-
rameter: 

𝐸𝑢𝑟 = 𝐸𝑢𝑟
𝑟𝑒𝑓

(
𝑐∙cot𝜙−𝜎3

𝑐∙cot𝜙+𝑝𝑟𝑒𝑓)
𝑚

(3) 

where 𝐸𝑢𝑟
𝑟𝑒𝑓

, m, c, 𝑝𝑟𝑒𝑓and 𝜙 are user-defined constant parameters. 𝐸𝑢𝑟
𝑟𝑒𝑓

is the reference unload-

ing-reloading modulus at the reference pressure 𝑝𝑟𝑒𝑓. The unloading-reloading modulus depends

on the maximum (minimum compressive) principal stress 𝜎3, the cohesion c, and the ultimate

friction angle 𝜙, as well as the power m. For clays, m is usually close to 1. For sands, m is usually 

between 0.5 and 1. 
The PH model also employs another modulus measure, 𝐸50, which defines the shape of the

primary shear hardening surface and obeys the following power law: 

𝐸50 = 𝐸50
𝑟𝑒𝑓

(
𝑐∙cot𝜙−𝜎3

𝑐∙cot𝜙+𝑝𝑟𝑒𝑓)
𝑚

(4) 

here 𝐸50
𝑟𝑒𝑓

 is a material parameter, which could be estimated from multiple sets of triaxial com-

pression tests with various cell stresses. 

2.2 Shear hardening 

The shear yield function is defined as 

𝑓𝑠 = (
𝑞𝑎

𝑞𝑎−𝑞
−

𝐸𝑖

𝐸𝑢𝑟
) 𝑞 −

𝐸𝑖

2
𝛾𝑝 = 0 (5) 

where 𝐸𝑖 = 2𝐸50/(2 − 𝑅𝑓), 𝐸𝑖/𝐸𝑢𝑟 is a constant (see Eq.(3) and (4)),  𝑞 = 𝜎3 − 𝜎1, and 𝑞𝑎 is
given as  

𝑞𝑎 =
𝑞𝑓

𝑅𝑓
= 𝐾𝑞𝑎(𝑐 ∙ cot𝜙 − 𝜎3) (6) 

where 𝐾𝑞𝑎 = 2 sin 𝜙/((1 − sin 𝜙)𝑅𝑓). The failure ratio Rf  has a value smaller than 1, and Rf =
0.9 in most cases. The ultimate deviatoric stress 𝑞𝑓 = 2 sin 𝜙 (𝑐 ∙ cot𝜙 − 𝜎3)/(1 − sin 𝜙) is con-
sistent with the MC failure law. 

The shear hardening parameter 𝛾𝑝 is defined incrementally as

∆𝛾𝑝 = −(∆𝜀1
𝑝

− ∆𝜀2
𝑝

− ∆𝜀3
𝑝

) (7) 

Due to the increase of 𝛾𝑝, the shear yield surface will expand, but the ultimate surface is still the
conventional MC failure surface. 

The PH model uses the following flow rule between plastic volumetric and shear strains: 

Δ𝜀𝑣
𝑝

= sin 𝜓𝑚 Δ𝛾𝑝 (8) 
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where 𝜓𝑚 is the mobilized dilation angle, which is smaller or equal to the user-defined ultimate 
dilation angle 𝜓. The mobilized dilation angle obeys the Rowe dilatancy law (1962):  

sin 𝜓𝑚 = 𝐹𝑐
sin 𝜙𝑚−sin 𝜙𝑐𝑣

1−sin 𝜙𝑚 sin 𝜙𝑐𝑣
, 𝑖𝑓 sin 𝜙𝑚 ≤ sin 𝜙𝑐𝑣 (9.a) 

sin 𝜓𝑚 =
sin 𝜙𝑚−sin 𝜙𝑐𝑣

1−sin 𝜙𝑚 sin 𝜙𝑐𝑣
, 𝑖𝑓 sin 𝜙𝑚 > sin 𝜙𝑐𝑣 (9.b) 

Where the parameter Fc is the contraction scale factor, with an allowable range of 0 to 0.25. The 
critical state friction angle cv is defined as  

sin 𝜙𝑐𝑣 =
sin 𝜙−sin 𝜓

1−sin 𝜙 sin 𝜓
 (10) 

The mobilized friction m is defined in terms of the current stress state 

sin 𝜙𝑚 =
𝜎1−𝜎3

𝜎1+𝜎3−2𝑐∙cot𝜙
  (11) 

A non-associated flow rule, consistent with a MC yield criterion is used in the model. The shear 
potential function is defined as 

𝑔𝑠 = 𝑚1𝜎1 + 𝑚3𝜎3 (12) 

where 𝑚1 = (−1 + sin 𝜓𝑚)/2, and 𝑚3 = (1 + sin 𝜓𝑚)/2.  
  In order to avoid over-dilatancy when soil reaches its critical void state with emax, the dilation 

angle needs a minor modification. One way proposed by Schanz et al. (1999) is to set a cut-off 
rule, so that 

sin 𝜓𝑚 = 0,          if   𝑒 ≥ 𝑒𝑚𝑎𝑥 (13) 

Here we introduce a smoothing technique to avoid sudden change of dilation angle:  

sin 𝜓𝑚 = 100 (1 −
𝑒

𝑒𝑚𝑎𝑥
),         if   𝑒 ≥ 0.99𝑒𝑚𝑎𝑥 (14) 

The dilation rules with cut-off and the smoothing technique are compared with the case without 
dilation cut-off in Figure 1. 

 

 
Figure 1. Volumetric strain curve for a standard triaxial compression test with dilation cut-off and smooth-
ing. 

2.3 Volumetric hardening 

The volumetric (cap) yield function is defined as  

𝑓𝑣 = 𝑔𝑣 =
�̃�2

𝛼2 + 𝑝2 − 𝑝𝑐
2 = 0 (15) 
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where 𝛼 is a  constant derived internally from other material parameters based on a virtual     
oedometer loading test; �̃� is a shear stress measure defined as �̃� = −[𝜎1 + (𝛿 − 1)𝜎2 − 𝛿𝜎3], and
𝛿 = (1 + sin 𝜙)/(1 − sin 𝜙). The initial value of the hardening parameter 𝑝𝑐, which denotes the
pre-consolidation pressure, can be determined using the initial stress state and an input material 
parameter ocr, so that  

𝑝𝑐,𝑖𝑛𝑖 = 𝑜𝑐𝑟 ∗ √
�̃�𝑖𝑛𝑖

2

𝛼2 + 𝑝𝑖𝑛𝑖
2 (16) 

If ocr assumes a large enough value, the model behaves as if the cap was non-existent. 
The associated flow rule is adopted for volumetric hardening (i.e. the potential volumetric func-

tion has the same form as the volumetric yield function).  
The volumetric hardening parameter 𝛾𝑝 is defined incrementally as

Δ𝛾𝑝 = −Δ𝜀𝑣
𝑝

 (17) 

where Δ𝜀𝑣
𝑝

 is the plastic volumetric strain increment.
Evolution of the hardening parameter 𝑝𝑐 is given by the relation:

Δ𝑝𝑐 = 𝐻𝑝∆𝛾𝑣 = 𝐻𝑐 (
𝑐∙cot𝜙+𝑝𝑐

𝑐∙cot𝜙+𝑝𝑟𝑒𝑓)
𝑚

∆𝛾𝑣 (18) 

where 𝐻𝑝 = 𝐻𝑐 (
𝑐∙cot𝜙+𝑝𝑐

𝑐∙cot𝜙+𝑝𝑟𝑒𝑓)
𝑚

, and 𝐻𝑐 is a constant  parameter derived internally from other

material parameters according to a virtual oedometer test.. 

Instead of taking 𝛼 and 𝐻𝑐 as input material parameters, another two parameters, 𝐾𝑛𝑐 and 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

are specified as input. 𝐾𝑛𝑐 denotes normal consolidation coefficient and 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 stands for the tan-

gent oedometer modulus at the reference pressure 𝑝𝑟𝑒𝑓. If 𝐾𝑛𝑐 is not provided by the user, it is

taken as 𝐾𝑛𝑐 = 1 − 𝑠𝑖𝑛𝜙 (default value).

2.4 Tension failure 

The model will check for the tension failure condition. The tension failure and potential functions 
are  

𝑓𝑡 = 𝑔𝑡 = 𝜎3 − 𝜎𝑡 (19) 

where 𝜎𝑡 is the tension limit. By default, 𝜎𝑡 is zero and user can provide value up to the upper

limit 𝜎𝑙𝑖𝑚
𝑡 = 𝑐/ tan 𝜙.

3 IMPLEMENTATION 

In the implementation of the PH model, an elastic trial, 𝜎𝑖𝑗
𝐼 , is first computed after adding to the 

old stress components, 𝜎𝑖𝑗
𝑜 , increments calculated by application of Hooke’s law to the total strain 

increment ∆𝜖𝑖𝑗 for the step. During this step, the moduli and, mobilized dilation angle are assumed

constant for simplicity based on the old stress components. All stresses are in terms of effective 

measurement.  
    The formulation for the trial stresses are: 

𝜎1
𝐼 = 𝜎1

𝑜 + 𝐸1∆𝜀1 + 𝐸2(∆𝜀2 + ∆𝜀3) (20.a) 

𝜎2
𝐼 = 𝜎2

𝑜 + 𝐸1∆𝜀2 + 𝐸2(∆𝜀3 + ∆𝜀1) (20.b) 

𝜎3
𝐼 = 𝜎3

𝑜 + 𝐸1∆𝜀3 + 𝐸2(∆𝜀1 + ∆𝜀2) (20.c) 

where 𝐸1 = 𝐾 + 4𝐺/3 , and 𝐸2 = 𝐾 − 2𝐺/3, and (∆𝜀1, ∆𝜀2, ∆𝜀3) is the set of principal strain
increments.  

The trial internal variables, 𝛾𝑝 and 𝛾𝑣 = −𝜀𝑣
𝑝
 are assumed the same values from the last step.

If the yield criteria is not satisfied, both the stress components and internal variables will be cor-

rected.  
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3.1 Shear hardening 

 If 𝑓𝑠 > 0, shear hardening will occur. The plastic strain increment is oriented in the direction of 
the gradient of the potential function in the principal stress space: 

Δ𝜀1
𝑝

= 𝜆𝑠
𝜕𝑔𝑠

𝜕𝜎1
= 𝜆𝑠𝑚1 (23.a) 

Δ𝜀2
𝑝

= 𝜆𝑠
𝜕𝑔𝑠

𝜕𝜎2
= 0 (23.b) 

Δ𝜀3
𝑝

= 𝜆𝑠
𝜕𝑔𝑠

𝜕𝜎3
= 𝜆𝑠𝑚3 (23.c) 

and 

Δ𝛾𝑝 = −(Δ𝜀1
𝑝

− Δ𝜀2
𝑝

− Δ𝜀3
𝑝

) = 𝜆𝑠 (24) 

The corrected stress components are: 

𝜎1 = 𝜎1
𝐼 − 𝜆𝑠(𝐸1𝑚1 + 𝐸2𝑚3) (25.a) 

𝜎2 = 𝜎2
𝐼 − 𝜆𝑠(𝐸2𝑚1 + 𝐸2𝑚3) (25.b) 

𝜎3 = 𝜎3
𝐼 − 𝜆𝑠(𝐸1𝑚3 + 𝐸2𝑚1) (25.c) 

and the corrected interval variable is 

𝛾𝑝 = 𝛾𝑝,𝐼 + Δ𝛾𝑝 = 𝛾𝑝,𝐼 + 𝜆𝑠 (26) 

The derived shear stress is then 

𝑞 = 𝜎3 − 𝜎1 = 𝑞𝐼 − 𝜆𝑠 ⋅ 2𝐺 (27) 

𝑞𝑎 = 𝑞𝑎
𝐼 + 𝜆𝑠 ⋅ 𝐾𝑞𝑎(𝐸1𝑚3 + 𝐸2𝑚1) (28) 

Substitute the corrected 𝑞, 𝑞𝑎, 𝛾𝑝 into the shear function 𝑓𝑠, 𝜆𝑠 can then be solved from  a nonlinear 
equation 𝑓𝑠(𝜆𝑠) = 0 either by a closed-form formulation or by an iteration method. Note that 𝛾𝑝 
is using the current value related to the current 𝜆𝑠, which implies that this correction algorithm 
uses a semi-implicit approach. If the trial stress is out of the shear failure surface (MC yield sur-
face), the conventional MC model implementation applies.  

3.2 Volumetric hardening 

If 𝑓𝑣 > 0, the volumetric hardening will occur. The plastic strain increment is related to the gra-
dient of the potential function in stress space: 

Δ𝜀1
𝑝

= 𝜆𝑣
𝜕𝑔𝑣

𝜕𝜎1
= 𝜆𝑣 [−

2�̃�

𝛼2 −
2

3
𝑝] (29.a) 

Δ𝜀2
𝑝

= 𝜆𝑣
𝜕𝑔𝑣

𝜕𝜎2
= 𝜆𝑣 [−

2�̃�

𝛼2 (𝛿 − 1) −
2

3
𝑝] (29.b) 

Δ𝜀3
𝑝

= 𝜆𝑣
𝜕𝑔𝑣

𝜕𝜎3
= 𝜆𝑣 [

2�̃�

𝛼2 𝛿 −
2

3
𝑝] (29.c) 

Evolution of the hardening parameter Δ𝜀𝑣
𝑝
 is given by the relation: 

Δ𝜆𝑣 = −Δ𝜀𝑣
𝑝

= −(Δ𝜀1
𝑝

+ Δ𝜀2
𝑝

+ Δ𝜀3
𝑝

) = 2𝑝𝜆𝑣 (30) 

In the above formulation, the plastic strain and volumetric hardening parameter increment is re-
lated to the current stress measurement (𝑝, or �̃�), so the correction algorithm uses a semi-implicit 
approach. 

The corrected stress components are 

𝜎1 = 𝜎1
𝐼 + [2𝑝𝐾 +

4�̃�𝐺

𝛼2 ] 𝜆𝑣 (31.a) 

𝜎2 = 𝜎2
𝐼 + [2𝑝𝐾 +

4(𝛿−1)�̃�𝐺

𝛼2 ] 𝜆𝑣 (31.b) 
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𝜎3 = 𝜎3
𝐼 + [2𝑝𝐾 −

4𝛿�̃�𝐺

𝛼2 ] 𝜆𝑣 (31.c) 

Noting that 𝑝 = −(𝜎1 + 𝜎2 + 𝜎3)/3, and �̃� = −[𝜎1 + (𝛿 − 1)𝜎2 − 𝛿𝜎3], we get

𝑝 =
𝑝𝐼

1+2𝐾𝜆𝑣
(32) 

�̃� =
�̃�𝐼

1+2𝑀𝜆𝑣
(33) 

where 𝑀 = 4𝐺(𝛿2 − 𝛿 + 1)/𝛼2. After substituting the corrected 𝑝 and �̃� into the yield func-
tion 𝑓𝑣, 𝜆𝑣 is found by solving the nonlinear equation 𝑓𝑣(𝜆𝑣) = 0 for the smallest root using an
iterative method.  

3.3 Combined shear/volumetric hardening 

It is possible that after the elastic trial, the stress is out of both the shear yield surface and volu-
metric yield surface. In this case, the plastic strain increment is related to the partial derivatives 
of the potential function as follows: 

Δ𝜀1
𝑝

= 𝜆𝑚
𝜕𝑔𝑠

𝜕𝜎1
+ 𝜆𝑣

𝜕𝑔𝑣

𝜕𝜎1
= 𝜆𝑚𝑚1 + 𝜆𝑣 [−

2�̃�

𝛼2 −
2

3
𝑝] (34.a) 

Δ𝜀2
𝑝

= 𝜆𝑚
𝜕𝑔𝑠

𝜕𝜎2
+ 𝜆𝑣

𝜕𝑔𝑣

𝜕𝜎2
= 𝜆𝑣 [−

2�̃�

𝛼2 (𝛿 − 1) −
2

3
𝑝] (34.b) 

Δ𝜀3
𝑝

= 𝜆𝑚
𝜕𝑔𝑠

𝜕𝜎3
+ 𝜆𝑣

𝜕𝑔𝑣

𝜕𝜎3
= 𝜆𝑚𝑚3 + 𝜆𝑣 [

2�̃�

𝛼2 𝛿 −
2

3
𝑝] (34.c) 

𝜆𝑚 and 𝜆𝑣 can be solved by an iterative method similar to that used in the shear or volumetric
hardening correction technique.  If the trial stress is out of both the volumetric hardening surface 
and MC failure surface, MC failure function should be used instead of the shear hardening func-
tion.  

3.4 Implementation procedure 

The implementation procedure is: in the initialization, the initial stress, evolution parameters and 
strain increment are defined for the zone and are assumed to be constant during this step. For 
simplicity, the moduli and dilation, which are dependent on the current stress and evolution pa-
rameters, are also assumed constants in the zone during this step. The trial elastic stresses and the 
possible stress corrections are defined at the sub-zone level. The trial stress increments obey the 
linear elastic (Hooke’s) law. If the trial stresses violate the tension limit, the tension failure pro-
cedure is called. The next step is to check whether the tension-corrected stress is in the tension or 
compression side. If in the tensions side, volumetric hardening will not apply. In either side, if the 
stress is out of the shear failure or shear yield surface, the shear failure or hardening procedure 
will be called respectively. In the compression side, if the stress is out of the volumetric yield 
surface, the volumetric hardening procedure will be called. In particular, if the stress is also out 
of the shear failure or shear yield surface, the mixed procedure with both the volumetric hardening 
and shear failure/hardening procedure will be called. A second tension failure procedure is called 
if any volumetric hardening or shear hardening/failure occurs to ensure that the averaged stress in 
the zone-level is within the tension limit. After all sub-zones complete the stress check for tension 
and shear failure, shear and volumetric hardening criteria, the internal variables, moduli and dila-
tion are then updated based on the zone average stresses.  

4 VERIFICATION EXAMPLES 

4.1 Comparison with MC model 

This example compares the plastic hardening and Mohr-Coulomb model behavior. The constitu-

tive models are used in a one-zone triaxial compression test with a constant cell pressure of 100 

kPa. The strength parameters including friction angle, dilation angle, and tension limit are the 
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same for both models. The 𝐸50 modulus of the PH model is used as Young’s modulus for the MC

model and 𝐸𝑢𝑟 is assumed to be three times the value of 𝐸50
𝑟𝑒𝑓

.  Figure 3 shows a plot of deviatoric 

stress versus axial strain for both PH and MC models. It is easy to verify from Figure 2 that: 

(1) The ultimate failure deviatoric stresses are the same for both models, as expected; (2) Looking

at the pre-failure curve, the PH and MC models are crossing at half the value of the failure stress,

which is consistent with the concept of 𝐸50 modulus; and (3) The unloading modulus in the MC

model is the same as the loading modulus while these moduli are different in the PH model.

Figure 2. Comparison of PH and MC models for a triaxial compression test. 

4.2 Triaxial compression test 

Drained triaxial tests on dense, medium and loose sands are simulated using the PH model. The 
ocr is set to a large value in order to prevent yielding on the cap. A plot of deviatoric stress versus 
axial strain is shown in Figure 3. As expected, the plots show a hyperbolic behavior. The unload-
ing-reloading paths are also shown in the figure. The plot of volumetric strain versus axial strain 
is shown in Figure 4. The dilatancy of the denser sands is clearly represented. The smooth decrease 
of the dilation angle when the void ratio is approaching the critical state occurs as a result of the 
dilation smoothing technique implemented in the model logic. 

Figure 3. Drained triaxial deviatoric stress versus axial strain for dense, medium and loose sands. 
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Figure 4. Volumetric strain versus axial strain for dense, medium and loose sands. 

4.3 Oedometer test 

This section presents the simulation of an oedometer test and shows the capability of the PH model 
to reproduce the evolution of lateral stress ratio 𝐾0 = 𝜎ℎ 𝜎𝑣⁄ . Three kinds of sand with friction
angles of 30, 35, and 40 degrees are used in the simulations and the default consolidation coeffi-
cient is calculated as 𝐾𝑛𝑐 = 1 − 𝑠𝑖𝑛𝜙. Initially the model is in equilibrium with an isotropic stress
state in each zone, 𝜎𝑖𝑖 = −0.1 kPa. The results of stress ratio evolution due to compression in the
oedometer test are shown in Figure 5, and it is seen that they correctly reproduce the expected 
evolution path. Figure 6 presents vertical oedometer pressure versus vertical strain, which repro-
duces the expected oedometer modulus at the reference vertical pressure of 100 kPa.  

Figure 5. 𝐾0 path calculated from the oedometer test with friction angles of 30, 35 and 40 degrees and
default 𝐾𝑛𝑐 values.
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Figure 6. Vertical pressure versus vertical strain from the oedometer test with friction angles of 30, 35 and 
40 degrees and default 𝐾𝑛𝑐 values.

4.4 Load-step sensitivity test 

In the implementation of the PH model, we used a semi-implicit algorithm through iteration within 
the constitutive level as well as the least sensitivity of the load-steps. In order to test the loading 
step sensitivity, a one-zone isotropic compression test with a velocity-control approach but with 
very different load steps of 20,000, 2000, and 200 (so the controlling velocities are very different) 
are calculated (Fig. 7). It proves that, although the yield and hardening functions are nonlinear 
functions of the principal stresses, the implemented PH model correctly converges to the same 
result regardless of the very different load steps. However, it is not encouraged to use a very big 
load -step during a practice because the overall framework may request smaller load steps. 

Figure 7. Load-step sensitivity testing with load steps = 20000, 2000, and 200. 

275



5 SUMMARY 

The new PH model formulated within the framework of hardening plasticity has been imple-
mented into the platform of FLAC3D (Itasca 2012). The main features of the new PH model are: 
hyperbolic stress strain relationship in uniaxial drained compression; generation of plastic strain 
associated with mobilized friction (shear hardening); generation of plastic strain in primary com-
pression (volumetric hardening); stress-dependent modulus according to a power law; elastic un-
loading/reloading compared to virgin loading; memory of pre-consolidation stress; and Mohr-
Coulomb failure criterion. Verification examples show the model good performance. Calibration, 
validation, and application are not addressed here; they are included in companion papers (Cheng 
& Lucarelli 2016 and Lucarelli & Cheng 2016).  
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