講

蠚

固体中の衝撃波の科学入門

片 山 雅 英

伊藤忠テクノソリューションズ(株) (〒100-6080 東京都千代田区霞が関 3-2-5 霞が関ビル)

Introductory Shock Wave Science in Solids

KATAYAMA Masahide

(Received October 13, 2009)

Key words: condensed matter (phase), elastic precursor, HEL, hugoniot, impact dynamics, shock impedance, shock wave, taylor test

1. 緒 言

本稿では「固体中の衝撃波」について議論する.ところが, 広辞苑第六版によると,衝撃波とは,「空気のような圧縮性 流体の中で,音速を超える速さで伝わる強い圧力変化の波. その前面に圧力・温度・密度が急激に変化する不連続面が できる.爆発に伴う圧縮波,遷音速で飛行する翼から発生 する波などはその例.」とあり,衝撃波の発生はあたかも気 体中に限られるかのように見える.インターネット上の百 科事典である日本語版"Wikipedia"も,2009年10月時点で は,「衝撃波」は気体中,主に空気中に発生すると述べてい る.それに対して,英語版"Wikipedia"では,明確に"solid, liquid or gas"中を伝播すると解説している.

日本におけるこの誤謬は、圧縮性の小さな固体が有意な 圧縮を被るような極めて大きな力を急激に作用されるよう な現象を経験することが少ないことに原因があるように思 われる.もう一つの原因としては、固体中に発生した衝撃 波を人間の五感で捉えることが困難であることも考えられ る.それに対して、今は経験することが稀になったが、筆 者が子供の頃の1960年代初め頃までは、ジェット機が低空 で音速を超えるような飛行法を採ることによって発生した と思われる大きな音(ソニックブーム)を聞くことがしばし ばあった.当時の多くの一般の大人もその原因を知ってお り、ほぼ正しい説明を受けたように記憶している.

本稿では、固体と流体を総称する用語である「凝縮体」中 に発生する衝撃波に関し、特に固体に焦点を当てて議論す ることにする.

2. 連続体力学による定式化

一般に、固体中に衝撃波が生じるようなエネルギー密度 の大きな力が作用する現象では、しばしば液化や気化、さ らには、プラズマ化のような相変化を生じる.このように、 衝撃問題においては、対象とする物理系に物質の3相が混 在し、しかも複雑に関係し合うのが一般である.そのため、 たとえば、「流体力学」を「気体の力学」と「液体の力学」に細 分化するのではなく,それらを統一的に取り扱う「連続体力 学」として捉えるのが有効かつ効果的である.この連続体と いう概念は,数学基礎論の連続性に起源があり,連続体を いくら細分化しても不連続性が現れないような媒体を仮定 するものである.

固体と流体の区別は,応力とひずみのせん断成分・偏差成 分の有無,材料強度の有無にある. さらに換言すれば,後 述の構成則(constitutive equation)が有意か否かにある.連続 体力学においては,固体と流体の両方に対して,同一の, i)連続の式,ii)運動方程式,iii)エネルギーの式の三つの基 礎式が立てられる. これらの式は、それぞれ、質量、運動 量,エネルギーの各保存則に相当する.このうち,運動方程 式のみがベクトル方程式であるが.空間を1~3のいずれの 次元を仮定しても、スカラー方程式の数に対し変数の数が 一つ多くこれらの基礎式だけでは解けない.しかし、これ らの基礎式に含まれる三つの状態変数で記述した、その連 続体物質の特性を規定する状態方程式(equation of sate: EOS)を連立させることによって解くことができる.熱力 学によれば、熱力学的状態量は、10種以上定義すること ができるが、独立に変化するのは二つのみである.通常、 衝撃解析法では、密度(ρ)と単位質量当りの比内部エネル ギー(E)を独立変数として圧力(P)を従属変数とする $P = f(\rho, E)$ という形の状態方程式が採用される. このため, 固体物質に対しても圧力を定義することにより、圧力と応 力が相互に反映させられる. すなわち, 圧が主応力成分 (σ_i) の平均値: $\sigma_0 = (1/3)(\sigma_1 + \sigma_2 + \sigma_3) \ge p = -\sigma_0$ なる関 係^{*1}にあると仮定すれば、全応力テンソル σ_{ii} 、偏差応力テ ンソル τ_{ij} および圧力の間には、 $\sigma_{ij} = \tau_{ij} - P\delta_{ij}$ なる関係が成 立する(ただし, δ_{ii} は Kronecker のデルタ). このように表 すことによって,流体は偏差応力成分がすべて0の状態と して固体と同様に取り扱うことができ、逆に、固体に対し ても圧力を導入することができ熱力学とのリンクが可能に なる.また、内部エネルギーは固体物質の偏差ひずみ成分

^{*1} 圧力は圧縮が正,応力は引張が正を仮定する.

の増分としての非可逆な塑性ひずみエネルギー,および可 逆なエネルギーである熱力学的仕事の和として評価される. 固体物質に対しては,偏差成分を評価するために,状態方 程式だけではなく,応力-ひずみ関係に代表される構成則 が連立して解かれる.特に,衝撃力が大きな問題では,固 体物質においても偏差成分に比べて静水圧成分が卓越する ため流体的挙動を示すことになる.

3. 衝撃波の基礎理論

3.1 保存則とジャンプ条件

衝撃波の厳密な定義については色々な議論があるが、こ こでは、連続体としてのある媒質が急激な圧縮を受けた結 果、媒質中に発生した擾乱がある速度(位相速度)で伝播す るフロント(面)の前後で密度、圧力、温度などの物理量が 不連続に変化する現象であると考える.

この面の前後でも質量,運動量,エネルギーの各保存則 が成り立つものとする.図1は、単位断面積の剛な円管中 の媒質が剛なピストンによって左から右方向に衝撃力を加 えられた前後の様子を示している.ただし,簡単のため, 円管中の媒質は流体的な1次元的定常流れであり、軸方向 以外の速度成分はないものと仮定する.また,以下では座 標系を空間に固定する Euler 座標系を適用するものとする. 時刻 t_0 にピストンは速度 u_1 で動き始め、 $t_0 + \Delta t$ には初期の 位置からu₁Atの距離まで移動する.初期の状態の媒質と圧 縮された媒質の間の不連続面はピストンに先行する波とし て伝播するため、その位相速度 Uはu,よりも速く、ピスト ンが移動する間にUAtだけ右に移動する.未圧縮の媒質の 密度をρ₀とすると,不連続面とピストン間の圧縮を受けた 媒質の総質量は、圧縮前の媒質を基準にするとρ₀UΔt であ り、圧縮後の媒質を基準にすると $\rho_1(U-u_1)\Delta t$ である.質 量保存則から、これらの質量は等しく、両質量を At で除し て式(1)を得る.

$$\rho_0 U = \rho_1 \left(U - u_1 \right) \tag{1}$$

ところで、この未圧縮の媒質を「新雪」に、ピストンを「除 雪器」に見立てると圧縮後の媒質は「押し固められた雪」に 相当し、衝撃波面は雪が次第に押し固められていく最前面 を意味することになる.そのため、このモデルは、しばし ば、"snow plow"(雪掻き)モデルと呼ばれる.

一方,運動量方程式(運動量保存則)を時間積分した式か ら,ある時間の間に物体に作用した力積は,作用前後の物

図1 剛なピストンによって駆動された衝撃波面の様子

体の運動量変化に等しいため,

$$P_1 - P_0 = \rho_1 (U - u_1) u_1 - \rho_0 U u_0 \tag{2}$$

ここで、簡単のため衝撃前の流速を0とし($u_0 = 0$)、式(1) を用いて ρ_0 を消去すると式(3)を得る.

$$P_1 - P_0 = \rho_0 U u_1 \tag{3}$$

さらに、力学系におけるエネルギー保存則は、全エネルギー (内部エネルギーと運動エネルギーの和)と外部からの仕 事量の授受の和が保存することを意味している. Δt の間に 衝撃波面が移動する全体積の媒質が初期にもっている内部 エネルギーは、その初期の比内部エネルギー(E_0)を用いて、 $\rho_0U\Delta t \times E_0$ で表わされる. 一方、その間にその媒質に対し てピストンが行う仕事量は $P_1 \times u_1 \Delta t$ である. それに対して、 Δt 後における同媒質の内部エネルギーは、衝撃後の比内部 エネルギー(E_1)を用いて、 $\rho_0U\Delta t \times E_1$ で表され、その部分 が持つ運動エネルギーは、 $1/2 \times (\rho_0U\Delta t) \times u_1^2$ であるから、 エネルギー保存式は式(4)のように表される.

$$\rho_0 U \Delta t E_0 + P_1 u_1 \Delta t = \rho_0 U \Delta t E_1 + \frac{1}{2} \rho_0 U \Delta t u_1^2$$
(4)

式(4)から式(1)と(3)を用いて Uと u₁を消去すると,式(5)の Hugoniot エネルギー式と呼ばれる重要な式が導かれる.

$$E_{1} - E_{0} = \frac{1}{2} \left(P_{1} + P_{0} \right) \left(\frac{1}{\rho_{0}} - \frac{1}{\rho_{1}} \right)$$
(5)

式(1), (3), (5)の3保存則を表す式をRankine-Hugoniotの式と 総称する.

一方, 質量と運動量の保存則を表す式(1)と(3)から *u*₁ を 消去すると式(6)が得られる.

$$\frac{P_1 - P_0}{V_1 - V_0} = -(\rho_0 U)^2 \tag{6}$$

ただし、 $V は V = 1/\rho$ で定義される比容積である. 今、(P, V)平面で P_1, V_1 を変数と考えると、式(6)は傾きが負の直線の 方程式を表す. この直線は Rayleigh 線と呼ばれ、質量と運 動量の保存が成り立つ流れの変化はこの直線上を移動する. 式(6)から Rayleigh 線は負の傾きを持つことに注意する.

3.2 Hugoniot の状態方程式

前項で示した式(1)~(6)では、2章で述べた基礎式に現れ る変数に比べて、衝撃波面の移動速度である位相速度(U) が増えており、物理量を決定するためには方程式の数が足 りない、2節で述べた衝撃波面を仮定しない方程式系では、 運動量保存式から波動方程式が導出でき、その固有値とし て音速が評価できる.この位相速度である音速が媒質中の 擾乱の伝播を律速する.それに対して、以上の方程式系で は、新たな位相速度を仮定することにより、その衝撃波面 前後で物理量の不連続性を表現した訳である.衝撃波研究 の分野では、この位相速度(U)を衝撃波速度と呼んで通常 U_s で表し、流速(u_1)を粒子速度と呼んで u_p で表す.

衝撃圧縮研究は核兵器開発を目的として 1940 年代に米 国で始まり,第2次大戦後は当時のソビエトが加わって, 1950 年代に本格化することによって,理論研究とともに膨 大な数の試験が実施された.その結果として,数百の物質 に対して $U_s \ge u_p$ の関係が求められ,その起源の微妙さに もかかわらずその多くが公開されてきた.実験方法として は,爆薬を使う方法,2段式軽ガス銃など超高速加速装置 を使う方法,核実験などが用いられてきた.代表的なデー タとしては,Los Alamos 国立研究所¹⁾,Lawrence Livermore 国立研究所²⁾,米国空軍研究所³⁾,ロシア(ロシア核セン ター・全ロシア実験物理学研究所:RFNC-VNIIEF)⁴⁾「いずれ の場合も現組織名」などの機関から公開されたものがある.

その成果によると,ほとんどの固体と液体物質に対して,

$$U_s = c_0 + su_p \tag{7}$$

なる線型関係がかなり良い精度で成り立つ. ただし, c_0 は バルク音速と呼ばれ,静的な等エントロピー過程の体積弾 性率 $K(=-V(dP/dV)_s) \ge c_0 = \sqrt{K/\rho}$ なる関係があるのに 対して,sは無次元の係数である.

ところで、質量保存則の式(1)を U_s , u_p , Vを用いて変形 すると、 $V_1/V_0 = 1 - u_p/U_s$ となり、さらに、 $\eta = 1 - V_1/V_0$ と おくと、式(7)から $u_p = c_0\eta/(1 - s\eta)$, $U_s = c_0/(1 - s\eta)$ という 関係が得られる. $P_0 = 0$ の仮定の下、これら二つの関係式 を運動量保存則の式(3)に代入することにより、式(7)に示し た線型の Hugoniot 関係に基づいた圧力評価式(8)を得る. この圧力を Hugoniot の衝撃圧力(P_H)と呼び、式(8)を衝撃 波の状態方程式(EOS: equation of state)と呼ぶ.

$$P_{H} = \rho_{0} c_{0}^{2} \eta \left(1 - s\eta\right)^{2} \tag{8}$$

以上のような定式化により、衝撃波の伝播過程と圧力 評価を中心とした固体と液体物質の衝撃特性を模擬する ことが可能になる. 圧力値としては、100 GPa 程度まで適 用可能である. ただし、相転移や相変化が生じるような場 合は適用限界となる. 図2(a)に、2024AI 合金に対して、Los Alamos 国立研究所で取得された $U_s - u_p$ 関係の実験値¹⁾を プロットしたグラフを示す. 粒子速度の増加とともに衝撃 波速度が増加することに注意する.

図2(b)は, Hugoniot 圧力と比容積の関係 (Hugoniot 圧縮曲 線)を、等エントロピーおよび等温曲線と同じ(P,V)平面 に描いた模式図であるが、等温過程、等エントロピー過程 よりも衝撃圧縮過程の方が大きな圧力を生じることを示し ている. 図中灰色で塗りつぶした面積が純粋に衝撃圧縮に よる内部エネルギー上昇分を表している. この図で注意す べきは、等温、等エントロピーの両過程の場合には、圧縮・ 膨張時の状態量はそれぞれの線上を連続的に変化するのに 対して、衝撃圧縮過程の場合には、0→1の変化は、あくま でも Rayleigh 線上を変化し, Hugoniot 圧縮曲線上を変化す るのではないということである. すなわち, Hugoniot 圧縮 曲線はある物質が取り得る圧縮状態の軌跡に過ぎない.換 言すれば、0→1の変化の圧縮過程では、Rayleigh 線上の0 と1の間の任意の点(A)の状態にはなり得るが, Hugoniot 圧縮曲線上の状態をとることはない.ただし、いったん、1 の状態まで衝撃圧縮された後に希薄(膨張)波を生じて圧 力緩和する場合には、状態1を通る等エントロピー曲線に 沿って圧力減衰が生じる.

なお、式(8)は密度にのみ依存する状態方程式であるが、 $\Gamma = V (\partial P / \partial E)_{\nu}$ で定義される Grüneisen 定数を用いて、内 部エネルギー依存性を持った状態方程式に拡張することが できる.この状態方程式は、Mie-Grüneisen 型の衝撃 Hugoniot の状態方程式と呼ばれ、衝撃分野で広く適用され ているが、ここでは紙数の制約のため詳細な説明は割愛す る.

3.3 力学的インピーダンス

以上においては、物質の強度に着目して、流体(液相と気相)と固体(固相)という分類法が有効であることを述べた. 一方、密度、音速が、それぞれ、 ρ 、cの連続体が、初速度 u_{imp} で剛壁に衝突する際に衝突面で発生する衝突圧力 (P_{imp}) は、運動量保存則から式(9)となる.

$$P_{imp} = \rho c u_{imp} \tag{9}$$

それに対して, 衝撃波が発生する問題では, 式(3)で $P_0 = 0$ として, $P_{imp} = \rho U_S u_{imp}$ となる.これらの式の右辺の連続体 の物性に依存する量, ρc , $\rho U_S \varepsilon$, それぞれ, 音響 インピーダンス^{*2}(acoustic impedance), 衝撃インピーダン ス (shock impedance)と呼び, 圧力に対する連続体の感度を 表す物理量(物性値)であると見なし得る.前述したように,

² インピーダンスは,電磁気学においては交流回路等の抵抗に 相当する物理量である.そのアナロジーから力学分野でも,本 来は波の透過と反射を支配する物理量として定義され,これら を総称して力学的インピーダンスと呼ばれる.

衝撃問題においては、圧力は最も重要な物理量であり、こ の観点からは、評価物質の密度と音速、ひいてはインピー ダンスが支配因子であるということになる.このため、密 度と音速が比較的近い値^{*3}をもっている固相と液相をまと めて凝縮相(condensed phase)と称し、気相と区別する.衝 撃問題においては、流体と固体の区別にも増して、凝縮相 と気相という区別が重要であることに注意する.

4. 固体の衝撃応答

4.1 固体の弾塑性挙動

これまでは、連続体のうちでも凝縮体という観点から衝 撃波の理論的背景について概観した.しかし、2 章におい て触れたように、液体は等方的な静水圧成分のみを有する のに対して、固体の場合にはせん断成分・偏差成分が存在す る.そのため、方向ごとに異なった力の成分を表現するこ とのできるテンソルによって記述する必要がある.以下で は、固体物質に特有な衝撃応答について述べるものとする.

周知のように、多くの固体に対して引張り試験を実施す ると、図3に示すような 1 軸の真応力と真ひずみの関係が 求められる. すなわち,比例限度に至るまでは応力が Young 率を比例定数としてひずみに比例し(Hooke の法則),ひず みの増大とともに応力の増加量が減少する,いわゆる加工 硬化を示す. 固体の材料挙動が、このような応力–ひずみ 関係のみによるとすれば、固体中に衝撃波が発生すること はない. 図中に示すように、媒質中を伝播する位相速度は $C(\varepsilon) = \sqrt{(d\sigma/d\varepsilon)/\rho}$ で表されるが、加工硬化を示す応力– ひずみ関係が上に凸な形を示す限り、弾性域では位相速度 は一定、塑性域ではひずみの増大とともに位相速度は減少 することを意味しており、負荷される力の増大とともに位 相速度が増大することはなく圧縮波を形成しないためであ る.

ただし、同図に示すように、多くの物質でひずみ速度の 増大とともに降伏応力が増大することが知られており、そ の効果を考慮に入れると位相速度の増大の可能性が考えら れる.しかしながら、実際には、その効果はそれほど大き

図4 固体の応力-体積関係と固体中を伝播する波の構造

図5 Taylor 試験の解析モデルと時刻歴出力位置一覧

くなく固体中に強い衝撃波が生じることを説明できない. また,ひずみが大きくなると固体が破壊し,せん断成分や 偏差成分を喪失するため,ひずみ速度依存性による位相速 度の増大には限界があることがわかる.

このように、固体の衝撃応答は弾塑性特性だけでは説明 できず、固体中の全応力を静水圧成分と偏差応力成分の和 として定義し、Hugoniot の状態方程式と構成則の両方を適 用することによってはじめて模擬することができる.

図4の左側に、固体の弾塑性特性を、1軸の応力-ひずみ 関係ではなく、状態方程式と同じ(P, V) 平面に Hugoniot の圧縮曲線とともに描く. 同図に示したように、固体に衝 撃圧縮を加えると, Hugoniot 弾性限界(HEL)と呼ばれる応 力までは弾性挙動を示し、その後塑性変形を生じる.この 圧縮曲線は、図2(b)の圧縮曲線が弾性分だけ上にシフ トしたものに相当する. 図4の右側の図は, σ_{F} , σ_{P} , σ_{H} , という3種類の応力で固体を圧縮した際に、固体中を伝播 する波の様子を模式的に示したものである. HEL よりも小 さな応力を加えた場合には、急峻な応力の立ち上がりの後、 固体の弾性特性に応じたある一定時間、入力した応力値を 保持し、その後立ち上がり時よりも緩やかに減衰する1波 構造を示す. それに対して, HEL を超えるような応力 σ_p で 衝撃圧縮を加えた場合には、 σ_E の場合と同じ速度で伝播 する波による急峻な応力上昇後,いったん緩和を生じ,再 び比較的なだらかな応力上昇を示し、ある時間そのピーク 応力値を保持した後に減衰する2波構造を示す.1波目を 先行弾性波(Elastic Precursor)と呼んでいる. さらに大きな σ_H で衝撃圧縮を加えると、弾性の時と類似した1波構造 のより大きな波が伝播する.

HEL は、物質に固有な値ではなく、試験方法などに依存して変化することが知られている.また、金属の場合に

^{*3} 液体の音響インピーダンスは固体に比べて1桁程度小さいに 過ぎないのに対し気体の場合には5桁程度も小さい.

は 0.5~1 GPa の程度で,降伏応力のオーダと同じである. それに対して,セラミックスなどの場合には数+GPa にも 達する場合がある.ある仮定の下に降伏点応力(σ_y)を用い て, $\sigma_{HEL} = (1-v)/(1-2v)\sigma_y$ と評価される.また,図4の両 グラフは,衝撃気化のような相変化を生じる場合だけでは なく,同形転移のような固相間の転移を生じる場合にもよ り複雑な形状を示すことに注意する.

4.2 Taylor 衝突試験の数値解析

固体物質の衝撃試験法として,1940年代に英国の GI. Taylor によって提唱され,現在も標準的な試験法として用 いられている Taylor 衝突試験法(Taylor Cylinder Test)⁷⁾があ る.円柱状の固体試料の底面を充分に剛な壁に衝突させる 単純な試験である.しかしながら,本稿では充分に議論を 尽くせないほどに重要な情報を得ることができる.紙数の 関係上,詳細については他の機会に譲るものとする.

4.2.1 衝突速度 100 m/s の Taylor 試験

図5に示すような,直径 40 mm,長さ 100 mm の 2024-T351Al 製の円柱を剛壁に衝突させる問題の数値実験を想 定する.計算は2ケース実施し,材料強度を考慮するモデ ルと考慮しない(流体的)モデルの2種類で,材料強度を考 慮する場合の構成則はJohnson-Cookのモデル⁵⁾を適用した. この構成則では,加工硬化,ひずみ速度依存性,熱軟化が 考慮され,式(10)によって降伏応力が計算される.

$$Y = \left(A + B\varepsilon^n\right) \left(1 + Cln\dot{\varepsilon}^*\right) \left(1 - T^{*m}\right) \tag{10}$$

ただし、 $T^* (= (T - T_{room})/(T_{melt} - T_{room})$, T は温度で、下添 字は室温と融点を意味する)は相同温度、 $\dot{\varepsilon}^*$ は正規化され たひずみ速度である. $A, B \ge n$ は静的加工硬化、C はひ ずみ速度依存性、m は熱軟化に関わる物性値であり、材料 試験によって決定される. 一方、状態方程式には、両ケー スともに、 Mie-Grüneisen 型の衝撃 Hugoniot の状態方程式 を適用した. 2024-T351A1 に対して適用した構成則と状態

表1	2024 A1	の構成則データ	5)
1X I	2027 AI		

Johnson-Cook のモデル						
G	:	27.6 Gpa				
A	:	0.265 Gpa				
В	:	0.426 Gpa				
N	:	0.34 -				
С	:	0.015 -				
m	:	1.0 -				
T _{mel}	;:	775.0 K				

表2 2024 A1 の EOS データ⁶⁾

Mie-Grüneisen 型 shock Hugoniot の状態方程式							
ρ	:	2.785	g/cm ³				
C_0	:	5328	m/s				
S	:	1.338	_				
Г	:	2.0	—				
Troom	;:	300.0	Κ				

方程式の材料データ一覧を、それぞれ、表1、表2に示す.

図5に示したように、試験体を 100×20 の Lagrange 要素 による 2 次元軸対称モデルで模擬した. 図中に示した 1~8 の位置は、以下で示す「弾塑性モデル(S)」と「流体モデル (F)」の数値解析による時刻歴の出力点を意味している.

試験体を流体と見なしたときに衝突面で発生する圧力は, 式(9)に静的諸量: $\rho_0 = 2.785 \times 10^3 \text{ g/m}^3$, $c_0 = 5328 \text{ m/s}$ と $u_{imp} = 100 \text{ m/s}, を代入して <math>P_{imp} = 1.484 \text{ GPa} となる. この$ 値は図6(a)の流体を仮定したケースの、衝突面に接した中 心軸近傍の出力点(#5)における圧力履歴の約 1~3 µs の 間持続する圧力とほぼ一致するが、試算値の方が若干低 めである. 弾塑性体ケースの衝突面中心の出力点である#1 における 1~3 µs の間の持続圧力は、流体ケースに比べ約 0.1 GPa 低く評価されている. 衝突方向(x 方向)の垂直応力 成分である σ_{xx} の時刻歴を図6(b)に示す. 弾塑性体の#1 に おける応力成分の絶対値は、先程の圧力値よりも大きく、 約 1.65 GPa である. 一方, 流体ケースの応力値の絶対値は 先程の圧力値と一致している.これは、弾塑性体の場合に は、衝突方向の偏差応力成分が卓越しその他の方向の応力 成分はそれに比べて小さくなるため、平均値としての圧力 は流体を仮定したケースよりも低くなったためである. そ れに対して, 流体を仮定したケースでは, 元来, 偏差成分 を持たず等方的であるため、軸方向の垂直応力成分だけで はなくすべての方向の垂直応力成分が圧力と一致する.

両グラフで、衝突面から離れるほど、弾塑性体の方が流 体ケースよりも擾乱が早く到達している.弾塑性体中を衝 撃波以外で最も早く伝播する擾乱である縦波の伝播速度

 (c_l) は弾性率から、 $c_l = \sqrt{K + \frac{4}{3}G}$ で計算される(ただ $|\rho|$ し, Gは横弾性率). それに対して, 流体の場合にはせん断 成分が存在しないため、横弾性率による寄与がなく、上述 のバルク音速で伝わる波が衝撃波以外では最も早く伝播す る擾乱である.いま, 2024A1 に対する静的な体積弾性率を バルク音速と密度から逆算する. すなわち, $c_0 = 5328$ m/s, $\rho = 2.785 \times 10^3 \text{ kg/m}^3$ を $K = \rho_0 c_0^2$ に代入して, K = 79.06 GPaを得る. したがって, 2024A1 に対する縦波の音速は, $c_1 = 6450 \text{ m/s}$ となる. その結果, $c_0/c_1 \approx 1.2$ となり, 図6の 結果と符合する. なお, (a), (b)のグラフ中, 矢印で示した 部分は前述の先行弾性波(Elastic Precursor)の2波構造を示 しているが、数値モデルのため立ち上がりが鈍っている. ただし、図6は時刻歴であり、図4の右側の図とは表示方法 が異なる.

図7に弾塑性ケースの衝突面に接した中心軸近傍(#1)の 圧力と四つの応力成分の時刻歴を示す.この図から,弾塑 性ケースの衝突面近傍(#1)における応力各成分と圧力の 絶対値の最大値の間には $|\sigma_{xx}| > |P| > |\sigma_{yy}| = |\sigma_{\theta\theta}| > |\sigma_{xy}|$ なる 関係があることがわかる.

4.2.2 衝突速度 1000 m/s の Taylor 試験

前項4.2.1 と同じく,弾塑性体と流体の二つのモデルにつき、衝突速度のみ10倍にして1000m/sとした解析を実施した. 図8(a)に各出力点における圧力の時刻歴を、(b)には弾塑性体ケースの衝突面に接した中心軸近傍(#1)の圧力と四つの応力成分の時刻歴を示す.式(3)、(9)のいずれの式に拠っても、衝突速度が10倍であるため衝突圧も10倍になることが予測されるが、図6(a)の結果と比較するといずれの履歴も10倍以上の最大圧力が計算されている.これは、衝突圧力が大きくなることによって、衝突体が衝撃圧縮を受け、位相速度(波の伝播速度)と密度が上昇するためであると考えられる.また、100m/sのケースでは、弾塑性体と流体モデルの最大圧力の間に約1割の差が存在したのに対し、1000m/sのケースではほとんど差が見られない.

同様に,弾塑性体ケースの衝突面に接した中心軸近傍 (#1)の圧力と四つの応力成分の時刻歴(図8(b))を見ること によって,より明確に確認・把握することができる.すな わち,流体ケースの衝突面近傍の点(#5)においては, $|\sigma_{xx}| = |P| = |\sigma_{yy}| = |\sigma_{\theta\theta}| > |\sigma_{xy}|$ の関係がある.また,援乱の 到達時間に関しても両ケースの間に有意な差はなくなって いる.これらの事実は、2章の最後の部分で述べた,「衝撃 力が大きな問題では、固体物質においても偏差成分に比べ る.」ということを裏付けている.逆に、そのような条件の 下では、たとえ構成則を無視しても、それほど結果には悪 影響を及ぼさない.

5. 結 言

以上では、固体中に発生する衝撃波を理解する上で必要 な、至極、基本的な要件についてのみ述べた.より高度な 理解、および実験法を含む実際的な知識の習得のためには、 それぞれの専門書に拠る必要がある.しかしながら、日本 語で書かれた書籍は非常に少ないのが現状である.筆者が、 別の機会に、高速衝撃現象のための数値解析法について書 いたものがある⁷⁾.この分野は日本の大学教育からほぼ完 全に欠落しているため、参考文献の初めの部分で代表的な 参考図書についてまとめて記した.必要な読者はそちらを 参考にして頂ければ幸いである.

4.2 節で示した数値解析例は衝撃解析コード: AUTODYN を用いて計算したものであるが,現在のパソコンでは高々 1 分程度で終了してしまう今では簡単な計算である.しか しながら,物理的な意味は決して瑣末ではない.本稿では 示さなかったが,相転移や相変化を伴う現象,たとえば, 高出力密度のレーザを照射する際に生じる衝撃気化現象な ども数値的に模擬することができる.また,現在では複雑 な3次元形状の問題もかなりの程度まで解けるようになっ てきている.機会を改めて紹介したいと考えている.

参考文献

- Marsh, S.P(Ed).: LASL shock Hugoniot data, University of California Press, Berkeley, (1980).
- 2) Thiel, M.van.: Compendium of Shock Wave Data, UCRL-50108, Lawrence Livermore Laboratory, Livermore, (1977).
- Kohn, B.J.: Compilation of Hugoniot equations of state, AFWL-TR-69-38, Air Force Weapons Laboratory, New Mexico, (1969).
- Trunin, R.F.: Shock compression of condensed materials, Cambridge University Press, Cambridge, (1998).
- Johnson, G.R. and Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proc. 7th Int. Symp. on Ballistics, The Hague, (1983), 541-547.
- Steinberg, D.J.: Equation of state and strength properties of selected materials, UCRL-MA-106439, Lawrence Livermore National Laboratory, Livermore, (1991).
- 7) 片山雅英: 計算力学ハンドブック(矢川元基, 宮崎則幸編), 朝 倉書店, (2007), 443-460.

片山雅英 KATAYAN

KATAYAMA Masahide

1955年3月8日生.1979年大阪大学工学 部原子力工学科卒.2001年東北大学より 博士(工学)の学位(論文)を得る.1979年 センチュリリサーチセンタ(株)(現,伊

藤忠テクノソリューションズ(株))入社.以後,高速衝突 や爆発問題の数値解析に関する業務に関与する.2006年よ り東京工業大学応用セラミックス研究所の客員教授を兼務. 日本衝撃波研究会,日本機械学会,日本塑性加工学会,日 本航空宇宙学会,火薬学会,土木学会,日本建築学会,

International Shock Wave Institute, Hypervelocity Impact Society など所属.

E-mail: masahide.katayama@ctc-g.co.jp TEL: (03) 6203-7425, FAX: (03) 3539-5173