

# **TCS Ultra-high Temperature Materials Database** (TCUHTM1)

### **Technical Information**

Available Starting with Thermo-Calc Version 2022b



Document created 5/5/2022

# Contents

| About the TCS Ultra-high Temperature Materials Database (TCUHTM) |   |
|------------------------------------------------------------------|---|
| TCS Ultra-high Temperature Materials Database (TCUHTM) Resources | 5 |
| TCUHTM1 Elements, Systems, Phases and Properties                 | 6 |
| TCUHTM1 Systems                                                  | 7 |
| TCUHTM1 Assessed Binary Systems                                  | 8 |
| TCUHTM1 Assessed Ternary Systems                                 | 9 |
| TCUHTM1 Phases                                                   |   |
| Common Phases for Ultra-high Temperature Materials               |   |
| TCUHTM1 Models for the Included Phases                           |   |

# About the TCS Ultra-high Temperature Materials Database (TCUHTM)

The TCS Ultra-high Temperature Materials Database (TCUHTM) is a thermodynamic database for ultra-high temperature materials than can be used for hypersonic aircraft and space vehicles. These are typically nonoxides with melting/decomposition temperatures in excess of 3000 °C. Examples include borides, nitrides, and carbides of Group IV-V metals in the periodic table, such as  $ZrB_2$ ,  $HfB_2$ , ZrC, HfC, TaC, and HfN. SiC was used to improves oxidation resistance. The database can be used to calculate phase diagrams and thermodynamic properties of assessed systems, but also for predicting phase equilibria, melting temperatures, and simulating operation processes for a wide range of compositions.

TCS Ultra-high Temperature Materials Database (TCUHTM)) is developed to be used with our entire suite of products: Thermo-Calc, the Add-on Modules, and all available SDKs.

The current version of the database is TCUHTM1.

### The CALPHAD Method

The Thermo-Calc databases are developed with the CALPHAD approach based on various types of experimental data and theoretical values (e.g. those from first-principles calculations). It is based on the critical evaluation of binary, ternary, and for some databases, important higher order systems. This enables predictions to be made for multicomponent systems and alloys of industrial importance. Among these, the thermodynamic database is of fundamental importance.

Learn more on our website about the <u>CALPHAD Method</u> and how it is applied to the Thermo-Calc databases.

### **Use Case Examples**

•

There are examples available to both demonstrate the *validation* of the database and to showcase the types of *calculations* that can be used for different materials or application area.

The TCS Ultra-high Temperature Materials Database (TCUHTM) enables predictions (such as multicomponent phase equilibria calculations, equilibrium solidification simulations, and Scheil solidification simulations) to be made for multicomponent systems and alloys of industrial importance. This means that the database can be used to extrapolate to higher-order systems by combining several critically assessed systems.

### **Combining Databases**

It is possible to combine several databases to make calculations using Thermo-Calc. For more information related to a specific type of problem, contact one of our support specialists at <u>info@thermocalc.com</u>. The experts are available to make recommendations on the most suitable database to use for your needs.

# TCS Ultra-high Temperature Materials Database (TCUHTM) Resources

Information about the database is available on our website and in the Thermo-Calc software online Help.

- **Website**: On our website the information is both searchable and the database specific PDFs are available to download.
- **Online Help**: Technical database information is included with the Thermo-Calc software online Help. When in Thermo-Calc, press F1 to search for the same information as is contained in the PDF documents described. Depending on the database, there are additional examples available on the website.

### **Database Specific Documentation**

- The TCS Ultra-high Temperature Materials Database (TCUHTM) Technical Information PDF document contains version specific information such as the binary and ternary assessed systems, and the phases and models. It also includes details about the properties data (e.g. viscosity, surface tension, etc.), and a list of the included elements.
- The *TCS Ultra-high Temperature Materials Database (TCUHTM) Examples Collection* PDF document contains a series of validation examples using experimental data, and a set of calculation examples showing some of the ways the database can be used.

Go to the <u>Ultra-high Temperature Materials</u> page on our website where you can access an examples collection and the technical information. Also explore further applications of Thermo-Calc including links to resources such as examples, publications, and more.

Learn more on our website about the <u>CALPHAD Method</u> and how it is applied to the Thermo-Calc databases.

# **TCUHTM1 Elements, Systems, Phases and Properties**

### **Included Elements**

There are 7 elements included in the database.

| В | С | Hf | Ν | Si | Та | Zr |
|---|---|----|---|----|----|----|
|---|---|----|---|----|----|----|

### **Assessed Systems and Phases**

A hybrid approach of experiments, first-principles calculations and CALPHAD modeling have been used to obtain thermodynamic descriptions of the constituent binary and ternary systems over the whole composition and temperature ranges.

All the stable solution phases and intermetallic compounds that exist in each assessed system are included. Note that in most cases phases having the same crystal structure had been merged as the same phase.

The database contains:

- 21 assessed binary systems
- 26 assessed ternary systems
- 35 phases



In Console Mode, you can list phases and constituents in the Database (TDB) module and the Gibbs (GES) module. For some phases, supplementary information is included in the definitions. To show the information, it is recommended in the Database (TDB) module to use the command LIST\_SYSTEM with the option Constituents.

# **TCUHTM1 Systems**

### In this section:

| TCUHTM1 Assessed Binary Systems  | 8 |
|----------------------------------|---|
| TCUHTM1 Assessed Ternary Systems | 9 |

# **TCUHTM1 Assessed Binary Systems**

Twenty-one (21) binary systems are assessed.

|    | С | Hf | Ν | Si | Та | Zr |
|----|---|----|---|----|----|----|
| В  | х | х  | х | х  | х  | х  |
| С  |   | X  | х | x  | х  | х  |
| Hf |   |    | х | x  | х  | х  |
| N  |   |    |   | х  | х  | х  |
| Si |   |    |   |    | х  | х  |
| Та |   |    |   |    |    | х  |

# **TCUHTM1 Assessed Ternary Systems**

Twenty-six (26) ternary systems are assessed.

| Assessed Ternary Systems |         |         |         |        |         |         |         |  |  |  |
|--------------------------|---------|---------|---------|--------|---------|---------|---------|--|--|--|
| B-C-Hf                   | B-C-Si  | В-С-Та  | B-C-Zr  | B-Hf-N | B-Hf-Si | B-Hf-Zr | B-N-Zr  |  |  |  |
| B-Si-Zr                  | C-Hf-Si | C-Hf-Ta | C-Hf-Zr | C-N-Si | C-N-Zr  | C-Si-Ta | C-Si-Zr |  |  |  |
| C-Ta-Zr                  | N-Si-Ta | N-Si-Zr |         |        |         |         |         |  |  |  |

| Tentatively Assessed Ternary Systems |        |         |        |        |         |         |  |  |  |
|--------------------------------------|--------|---------|--------|--------|---------|---------|--|--|--|
| B-Hf-Ta                              | B-N-Ta | B-Ta-Zr | C-Hf-N | C-N-Ta | Hf-N-Si | Hf-N-Ta |  |  |  |

# **TCUHTM1** Phases

### In this section:

| Common Phases for Ultra-high Temperature Materials | .11  |
|----------------------------------------------------|------|
| TCUHTM1 Models for the Included Phases             | . 12 |

# **Common Phases for Ultra-high Temperature Materials**

### TCUHTM1 Models for the Included Phases

The following lists common phase names and the corresponding Thermo-Calc database phase names for some key ultra-high temperature materials.

| Name in the Database | Common Name and Description                                                                             |
|----------------------|---------------------------------------------------------------------------------------------------------|
| LIQUID               | Liquid phase, which covers the melt of ultra-high temperature materials                                 |
| FCC_B1               | Carbide and nitride-based phase, which covers HfC, HfN, TaC, TaN, ZrC, ZrN solution phase compositions. |
| НСР_АЗ               | Hf, Zr, Ta2C, Ta2N solution phase                                                                       |
| BCC_A2               | Hf, Ta, Zr solution phase                                                                               |
| MB2_C32              | It covers HfB2, TaB2, ZrB2                                                                              |
| M5Si3_D88            | lt covers Hf5Si3, Zr5Si3, Hf5Si3B, Hf5Si3C, Zr5Si3C, Zr5Si3N                                            |

# **TCUHTM1 Models for the Included Phases**

#### The table lists all phases and the thermodynamic model used to describe the phase.

| Name        | Prototype | Pearson | Spacegroup | Strukturbericht | SG# | Sublattice                                                                                                                                                                                                                                                            | Notes                                             |
|-------------|-----------|---------|------------|-----------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| B12ZR       | UB12      | cF52    | Fm-3m      | D2f             |     | (B)12(Zr)1                                                                                                                                                                                                                                                            |                                                   |
| B3SI        | B13C2     | hR15    | R-3m       | D1g             | 166 | (B)6(Si)2(B, Si)6                                                                                                                                                                                                                                                     |                                                   |
| B4C         | B4C       | hR15    | R-3m       | D1g             | 166 | (B11C, B12)1(B2, C2B, CB2, Si2)1                                                                                                                                                                                                                                      |                                                   |
| B6SI        | B6Si      | oP280   | Pnnm       |                 |     | (B)210(Si)23(B, Si)48                                                                                                                                                                                                                                                 |                                                   |
| BCC_A2      | w         | cl2     | lm-3m      | A2              | 229 | (Hf, Si, Ta, Va, Zr)1(B, C, N, Va)3                                                                                                                                                                                                                                   | Hf, Ta, Zr Body-<br>Centered Cubic                |
| BETAR_BORON | В         | hR105   | R-3m       |                 | 166 | (B)93(B, C, Si)12                                                                                                                                                                                                                                                     |                                                   |
| BNSI        | В         | hR12    | R-3m       |                 | 166 | (B)61(Si)1(B, Si)8                                                                                                                                                                                                                                                    | BnSi                                              |
| BN_B4       | ZnS, B4   | hP4     | P6_3/mmc   | Bk              | 194 | (B)1(N)1                                                                                                                                                                                                                                                              | Wurtzite                                          |
| C16_THETA   | Al2Cu     | tl12    | I4/mcm     | C16             | 140 | (Hf, Ta, Zr)2(Si)1                                                                                                                                                                                                                                                    | Hf2Si, Zr2Si                                      |
| CRSI2_C40   | CrSi2     | hP9     | P6_222     | C40             | 180 | (Hf, Si, Ta)1(Si)2                                                                                                                                                                                                                                                    | TaSi2, ZrSi2                                      |
| D5A_M3B2    | Si2U3     | tP10    | P4/mbm     | D5a             | 127 | (Hf, Ta)3(B)2                                                                                                                                                                                                                                                         | Ta3B2                                             |
| DIAMOND_A4  | с         | cF8     | Fd-3m      | A4              | 227 | (B, C, Si)1                                                                                                                                                                                                                                                           | Si                                                |
| FCC_B1      | NaCl      | cF8     | Fm-3m      | B1              | 225 | (Hf, Ta, Va, Zr)1 (B, C, N)1                                                                                                                                                                                                                                          | HfC, HfN, TaC,<br>TaN, ZrC, ZrN<br>solution phase |
| GAS         |           |         |            |                 |     | (B, B1C1, B1C2, B1N1, B2, B2C1, C, C1N1, C1N2_CNN, C1N2_NCN, C1SI1, C1SI2, C1SI3, C1SI4, C2, C2N1_CCN, C2N1_CNC, C2N2, C2SI1, C2SI2, C2SI3, C3, C3N1, C4, C4N1, C4N2, C5, C5N1, C60, C6N1, C6N2, C9N1, HF, N, N1SI1, N1SI2, N1ZR1, N2, N3, SI, SI2, SI3, Ta, Zr ZR2)1 |                                                   |

| Name       | Prototype | Pearson | Spacegroup | Strukturbericht | SG# | Sublattice                             | Notes                                                    |
|------------|-----------|---------|------------|-----------------|-----|----------------------------------------|----------------------------------------------------------|
| GRAPHITE   | с         | hP4     | P6_3/mmc   | A9              | 194 | (B, C)1                                |                                                          |
| HCP_A3     | Mg        | hP2     | P6_3/mmc   | A3              | 194 | (Cr, Fe, Nb, Ni, Sn, Zr)1(H, O, Va)0.5 | Hf, Zr, Ta2C,<br>Ta2N solution<br>phase                  |
| HF3N2      | TiS       | hR18    | R-3m       |                 | 166 | (Hf)0.64(N)0.36                        |                                                          |
| NF4N3      | Sc2Te3    | hR8     | R-3m       |                 | 166 | (Hf)0.61(N)0.39                        |                                                          |
| LIQUID     |           |         |            |                 |     | (B, C, Hf, N, Si, Ta, Zr)              |                                                          |
| M2B_TETR   | Al2Cu     | tl12    | I4/mcm     | C16             | 140 | (Ta)2(B)1                              | Ta2B                                                     |
| M3SI1      | Ti3P      | tP32    | P4_2/n     |                 | 86  | (Hf, Ta, Zr)3(Si)1                     | Ta3Si, Zr3Si                                             |
| M3SI2_D5A  | Si2U3     | tP10    | P4/mbm     | D5A             | 127 | (Hf, Zr)2(Si)2                         | Hf3Si2, Zr3Si2                                           |
| M5SI3_D88  | Mn5Si3    | hP16    | P6_3/mmc   | D88             | 193 | (Hf, Zr)3(Si)3(B, C, N, Va)1           | Hf5Si3, Zr5Si3,<br>Hf5Si3B, Hf5Si3C,<br>Zr5Si3C, Zr5Si3N |
| MB2_C32    | AIB2      | hP3     | P6/mmm     | C32             | 191 | (B)2(B, Hf, Ta, Zr)1                   | HfB2, TaB2, ZrB2                                         |
| MB_B33     | CrB       | o\$8    | Cmcm       | B33             | 63  | (Hf, Ta, Zr)1 (B)1                     | TaB, ZrB                                                 |
| MSI_B27    | FeB       | oP8     | Pnma       | B27             | 62  | (Hf, Zr)1(Si)1                         | HfSi, ZrSi                                               |
| SI3N4      | Si3N4     | hP28    | P31c       |                 | 159 | (Si)3(N)4                              |                                                          |
| SIC        | ZnS       | cF8     | F-43m      | B3              | 216 | (Si)1(B, C)1                           |                                                          |
| TA5SI3C    |           |         |            |                 |     | (Ta)5(Si)3(C, N, Va)1                  | Ta5Si3C, Ta5Si3N                                         |
| TA5SI3_D8L | Cr5B3     | tl32    | I4/mcm     | D8I             | 140 | (Hf, Ta)5(Si)3                         | Low temperature<br>Ta5Si3                                |
| TA5SI3_HT  | W5Si3     | tl32    | I4/mcm     | D8m             | 140 | (Ta)5(Si)3                             | High<br>temperature<br>Ta5Si3                            |

| Name      | Prototype | Pearson | Spacegroup | Strukturbericht | SG# | Sublattice         | Notes          |
|-----------|-----------|---------|------------|-----------------|-----|--------------------|----------------|
| TI3B4     | Ta3B4     | ol14    | Immm       | D7b             | 71  | (B)4(Hf, Ta)3      | Ta3B4          |
| TIB_B27   | FeB       | oP8     | Pnma       | B27             | 62  | (B)1 (Hf, Ta, Zr)1 | HfB            |
| ZR5SI4    | Cr5B3     | tI32    | I4/mcm     | D8I             | 140 | (Hf, Zr)5(Si)4     | Zr5Si4, Hf5Si4 |
| ZRSI2_C49 | ZrSi2     | o\$12   | Cmcm       | C49             | 63  | (Hf, Zr)1(Si)2     | ZrSi2, HfSi2   |