Problem:
A 25% or more increase in the material removal rate of a rough milling operation in AL6061-T6 is desired. The upper limit and margin of operation are unknown, as are any possible detrimental effects on other quality measures.

Objectives:
Determine the highest cutting speed that will:
1. Maintain the tool temperature within 50°C of the original conditions, so that the tool life is not significantly affected.
2. Minimize part distortion by limiting the cutting forces to an increase of 30 lbs or less.
3. Not require any change in tool design, feed, and depth of cut from the original setup.

Project Setup:
Model the cutting process with the following three cutting speeds and original parameters:
1. Cutting Speeds:
 • 3000 sfm (the original cutting speed)
 • 3750 sfm (a 25% increase in MRR)
 • 4500 sfm (a 50% increase in MRR)
2. Feed: 0.010 in/rev
3. Depth of Cut: 0.250 inches
4. Rake Angle: 20°
5. Clearance Angle: 8°
6. Cutting Edge Radius: 0.001 inches
7. Tool Insert Material: Tungsten carbide
8. Workpiece Material: AL6061-T6

Results Analysis:
1. Temperature:
Increasing the cutting speed from 3000 sfm to 4500 sfm only increases the maximum tool temperature from 580°C to 600°C (Fig. 1,2,3). On the tool, the region where temperature exceeds 500°C is along the rake face starting at the tool tip with a length approximately equal to the feed.

Why is Third Wave AdvantEdge™ needed?

To determine the highest practical cutting speed without interruption of production and degradation of any other quality measures.

Case Study #20
High Speed Machining
Increasing Material Removal Rate

Figure 1: AL6061 at cutting speed = 3000 sfm

Figure 2: AL6061 at cutting speed = 3750 sfm
Conclusions:
The material removal rate for the AL6061-T6 rough milling operation can be increased by 50% by increasing the cutting speed from 3000 sfm to 4500 sfm. Third Wave AdvantEdge has shown that this increase is achievable because:

- It will not cause tool overheating (the temperature rise is less than 30°C).
- It will not cause increased part distortion (cutting forces increase less than 15 lb).

Therefore, no upgrade of the original tool or change of other cutting parameters is necessary.

Recommendation:
By using Third Wave AdvantEdge you can determine cutting forces and temperatures to investigate the feasibility of using higher cutting speeds to increase material removal rate. Third Wave AdvantEdge can also be used to optimize other cutting parameters (feed, tool geometry, tool material, etc.) to explore the possibilities for even greater material removal rate.

For more information contact:
Third Wave Systems
7301 Ohms Lane, Suite 580
Minneapolis, MN 55439
www.thirdwavesys.com
888-891-1225